Project description:Comparative RNA-seq analysis of MAMP triggered gene expression in two sorghum bicolor lines, BTx623 and SC155-14E, revealed a clear transcriptional response to elicitation with the microbe associated molecular pattern (MAMPs) flagellin (flg22) or chitin elicitation.
Project description:Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI) are well-defined modes of plant immunity triggered by recognition of pathogen effector proteins and microbe-associated molecular patterns, respectively. While ETI and PTI network extensively share signaling components, the shared components are used in different ways, resulting in distinct network properties in the model plant Arabidopsis: immunity is highly robust against network perturbations in ETI but relatively sensitive in PTI. However, the molecular mechanism how the shared network leads to the different properties is not known. Here we show that sustained MAPK activation compensate salicylic acid (SA) signaling. A 12 DNA microarray study using total RNA from Arabidopsis transgenic plants carrying DEX-inducible MKK4DD in Col or sid2-2 background treated with DEX or control.
Project description:Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI) are well-defined modes of plant immunity triggered by recognition of pathogen effector proteins and microbe-associated molecular patterns, respectively. While ETI and PTI network extensively share signaling components, the shared components are used in different ways, resulting in distinct network properties in the model plant Arabidopsis: immunity is highly robust against network perturbations in ETI but relatively sensitive in PTI. However, the molecular mechanism how the shared network leads to the different properties is not known. Here we show that salicylic acid (SA) reponsive genes can respond in the absense of SA during ETI. A 24 DNA microarray study using total RNA from Arabidopsis wildtype Col-0 and sid2-2 mutant infected with Pto hrcC-, Pto EV, Pto AvrRpt2 or water.
Project description:Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI) are well-defined modes of plant immunity triggered by recognition of pathogen effector proteins and microbe-associated molecular patterns, respectively. While ETI and PTI network extensively share signaling components, the shared components are used in different ways, resulting in distinct network properties in the model plant Arabidopsis: immunity is highly robust against network perturbations in ETI but relatively sensitive in PTI. However, the molecular mechanism how the shared network leads to the different properties is not known. Here we show that sustained MAPK activation compensate salicylic acid (SA) signaling.
Project description:Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI) are well-defined modes of plant immunity triggered by recognition of pathogen effector proteins and microbe-associated molecular patterns, respectively. While ETI and PTI network extensively share signaling components, the shared components are used in different ways, resulting in distinct network properties in the model plant Arabidopsis: immunity is highly robust against network perturbations in ETI but relatively sensitive in PTI. However, the molecular mechanism how the shared network leads to the different properties is not known. Here we show that salicylic acid (SA) reponsive genes can respond in the absense of SA during ETI.
Project description:This study used with RNA-Seq to examine the tissue specific expression data within sorghum plants for improving the Sorghum bicolor gene annotation. We examined the RNA from tissues (spikelet, seed and stem) in Sorghum bicolor (BTx623).Total RNAs form each tissues were extracted using SDS/phenol method followed by LiCl purification
Project description:This study utilized next generation sequencing technology (RNA-Seq and BS-Seq) to examine the transcriptome and methylome of various tissues within sorghum plants with the ultimate goal of improving the Sorghum bicolor annotation We examined the mRNA of various Sorghum bicolor (BTx623) tissues (flowers, vegitative and floral meristems, embryos, roots and shoots) and bisulfite treated DNA from two root samples
Project description:In plants, recognition of immunogenic molecular patterns, such as bacterial flagellin (flg22 epitope), leads to an enhanced state of immunity, designated pattern-triggered immunity (PTI). Following cognate ligand perception, pattern recognition receptors initiate sequential phosphorylation events to activate defense responses against invading pathogens. To gain further insight into PTI signaling, we conducted phosphoproteome analyses in Arabidopsis seedlings with immunogenic molecular patterns.
Project description:Reveal the multi-layered regulatory pattern of tobacco pattern triggered immunity, and systematically elucidate the pattern triggered immunity (PTI) mechanism of tobacco plants under the joint stress of microplastics and pathogens, especially in the multi-level regulatory network of signal transduction pathways, gene expression, and protein regulation. Through omics analysis, key regulatory factors in PTI response were identified, and a tobacco immune regulatory network model was constructed to reveal the dynamic regulatory mechanism of the plant immune system under different stress conditions.
Project description:We developed a commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) and generated this dataset to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (corn and sugarcane) were also included in our array design.