Project description:Humans and their microbiota have coevolved a mutually beneficial relationship, with the human host providing a hospitable environment for the microbes, and the microbiota providing many benefits including nutritional benefits and protection from pathogen infection1. Maintaining this relationship requires careful immune balance to contain commensals within the lumen while limiting inflammatory anti-commensal responses1,2. A number of groups describe T cell antigen-specific recognition of intestinal microbes3,4. While the local environment shapes effector cell differentiation3–5 it is unclear how microbiota-specific T cells are educated in the thymus. Here we identify that early life intestinal colonization leads to trafficking of microbial antigens from the intestine to the thymus by intestinal dendritic cells (DCs) which then expand microbiota-specific T cells. Once in the periphery, microbiota-specific T cells have pathogenic potential, or can protect against related pathogens. In this way, the developing microbiota shapes and expands the thymic and peripheral T cell repertoire, allowing for enhanced recognition of intestinal microbes and pathogens.
Project description:Adequate sleep is essential for relieving stress and rejuvenating the mind; however, undesirable physiological and pathological responses resulting from sleep insufficiency or sleep deprivation (SD) are becoming increasingly common. However, the influence of sleep deficiency on gut microbiota and microbiota-associated human diseases, especially on cardiac diseases remain controversial. Here, we constructed the experimental SD model in mice and found it significantly resulted in weakness, depression-like behaviors, and multiple organs dysfunction. Intriguingly, SD mice developed pathogenic cardiac hypertrophy and fibrosis with poor ejection fraction as well as fractional shortening. 16s rRNA sequencing demonstrated that SD-induced the pathogenic effects of gut microbiota, which was also observed in mice received by fecal microbe from SD mice in fecal microbiota transplantation (FMT) assays. Next, we investigated the therapeutic effects and underlying mechanisms of oxygen therapy in gut microbiota-associated cardiac fibrosis and dysfunction. The environment of 30% oxygen concentration effectively ameliorated the pathological effects on cardiac function. Transcriptome data also found oxygen therapy targeted several hypoxia-dependent pathways and suppressed cardiac collagen production. In conclusion, these results indicated the importance of sufficient sleep in gut microbiota and may represent a potential therapeutic strategy of oxygen environment exerts protective effects in sleepless sufferings through gut microbiota.
Project description:Major depressive disorder is caused by gene-environment interactions and the gut microbiota plays a pivotal role in the development of depression. However, the mechanisms by which the gut microbiota modulates depression remain elusive. Herein, we detected the differentially expressed hippocampal long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs) and microRNAs (miRNAs) between mice inoculated with gut microbiota from major depressive disorder patients or healthy controls, to identify the effects of gut microbiota-dysbiosis on gene regulation patterns at the transcriptome level. We also performed functional analysis to explore the microbial-regulated pathological mechanisms of depression. Two hundred mRNAs, 358 lncRNAs and 4 miRNAs were differentially expressed between the two groups. Functional analysis of these differentially expressed mRNAs indicated dysregulated inflammatory response to be the primary pathological change. Intersecting the differentially expressed mRNAs with targets of differentially expressed miRNAs identified 47 intersected mRNAs, which were mainly related to neurodevelopment. Additionally, we constructed a microbial-regulated lncRNA-miRNA-mRNA network based on RNA-RNA interactions. According to the competitive endogenous RNA hypothesis, two neurodevelopmental ceRNA sub-networks implicating in depression were identified. This study provides new understanding of the pathogenesis of depression induced by gut microbiota-dysbiosis and may act as a theoretical basis for the development of gut microbiota-based antidepressants.
Project description:Clostridioides difficile is one of the most common nosocomial pathogens and a global public health threat. Upon colonization of the gastrointestinal tract, C. difficile is exposed to a rapidly changing polymicrobial environment and a dynamic metabolic milieu. Despite the link between the gut microbiota and susceptibility to C. difficile, the impact of synergistic interactions between the microbiota and pathogens on the outcome of infection is largely unknown. Here, we show that microbial cooperation between C. difficile and Enterococcus has a profound impact on the growth, metabolism, and pathogenesis of C. difficile.. Through a process of nutrient restriction and metabolite cross-feeding, E. faecalis shapes the metabolic environment in the gut to enhance C. difficile fitness and increase toxin production. These findings demonstrate that members of the microbiota, such as Enterococcus, have a previously unappreciated impact on C. difficile behavior and virulence.
Project description:The gut microbiota and tumor-associated macrophages (TAM) impact anti-PD-1 checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor TREM2 attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 combined with TREM2 deficiency induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus (R. gnavus) in the gut microbiota. Gavage of wild-type mice with R. gnavus recapitulated enhancement of anti-PD-1-mediated tumor elimination occurring in the absence of TREM2. The intestinal proinflammatory environment coincided with expansion, increased circulation and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.
Project description:Insect gut microbiota plays important roles in acquiring nutrition, preventing pathogens infection, immune responses, and communicating with the environment. Gut microbiota can be affected by some external factors such as foods, temperature, and antibiotics. Spodoptera frugiperda (Lepidoptera: Noctuidae) is an important destructive pest of grain crops all over the world. The function of gut microbiota in S. frugiperda remains to be investigated. In this study, we fed the S. frugiperda with the antibiotic mixture (penicillin, gentamicin, rifampicin, and streptomycin) to perturb the gut microbiota, and further examined the effect of dysbiosis in gut microbiota on the gene expression of S. frugiperda by RNA sequencing. We found the composition and diversity of the gut bacterial community were changed in S. frugiperda after antibiotics treatmen, and the expression of genes related to energy and metabolic process were affected after antibiotics exposure in S. frugiperda. Our work will help understand the role of gut microbiota in insects.
Project description:Thyroid cancer (TC), the most common malignancy of the endocrine system, is currently the fifth most common malignancy diagnosed in women (1). The incidence of TC in the United States has increased by an average of 3% per year over the past 4 decades. Much progress has been made in exploring the etiology and pathogenesis of thyroid cancer, while the exact etiology remains unknown, TC is thought to arise from interactions between genetic susceptibility factors, epigenetic effects, and various environmental factors. Besides the improvement of diagnosis, TC increasing incidence emphasize that other important factors such as the environment play an important role in disease pathogenesis. While microbiota as an environment factor to some cancers accept widespread attention, if microbiota also as a risk factor for TC, it is worthy to be considered.