Project description:We report a global survey of viral small RNAs (vsmRNAs) from >200 Aedes aegypti samples to identify many mosquito viruses that actively infect this prominent arboviral vector. Ae. aegypti viruses in the Americas were abundant, with some displaying geographical boundaries. Viruses infecting Asian Ae. aegypti were similar to those in the Americas and revealed the first wild example of dengue vsmRNAs. African Ae. aegypti displayed vsmRNAs from viruses unique to these African strains. Academic lab colonies generally lacked viruses, yet two commercial strains were deeply infected by a tombus-like virus that is related to plant viruses. Comparing matched viral long RNAs to vsmRNAs revealed viral transcripts evading the mosquito RNA interference (RNAi) pathway. By infecting mosquito cells with Ae. aegypti homogenates, we generated stably infected cell lines which produced vsmRNAs that were comparable to native mosquito vsmRNA patterns. Lastly, we demonstrate that these stably infected mosquito cells producing vsmRNAs can exert gene silencing of reporters bearing viral sequence segments, providing a potential explanation for how Ae. aegypti can tolerate the persistence of viral infections. This vsmRNA genomics approach in Ae. aegypti can add to existing vector surveillance approaches by discovering new viruses that persist in mosquito populations.
Project description:Purpose: Establish a high-throughput method to transcriptionally define projection neurons, VECTORseq, that reimagines transgenes expressed by widely used retrogradely infecting viruses as multiplexed RNA barcodes that are detected in single-cell sequencing. Methods: mRNA profiles of adult mouse brains Conclusions: Retrograde viruses express mRNA at levels detectable in single-cell sequencing. Different transgenes can be multiplexed in a single sequencing run. VECTORseq identifies both cortical and subcortical projection neurons. VECTORseq defined new superior colliculus and zona incerta projection populations. Established a high-throughput method to transcriptionally define projection neurons, VECTORseq, that reimagines transgenes expressed by widely used retrogradely infecting viruses as multiplexed RNA barcodes that are detected in single-cell sequencing.
Project description:We report a global survey of viral small RNAs (vsmRNAs) from >200 Aedes aegypti samples to identify many mosquito viruses that actively infect this prominent arboviral vector. Ae. aegypti viruses in the Americas were abundant, with some displaying geographical boundaries. Viruses infecting Asian Ae. aegypti were similar to those in the Americas and revealed the first wild example of dengue vsmRNAs. African Ae. aegypti displayed vsmRNAs from viruses unique to these African strains. Academic lab colonies generally lacked viruses, yet two commercial strains were deeply infected by a tombus-like virus that is related to plant viruses. Comparing matched viral long RNAs to vsmRNAs revealed viral transcripts evading the mosquito RNA interference (RNAi) pathway. By infecting mosquito cells with Ae. aegypti homogenates, we generated stably infected cell lines which produced vsmRNAs that were comparable to native mosquito vsmRNA patterns. Lastly, we demonstrate that these stably infected mosquito cells producing vsmRNAs can exert gene silencing of reporters bearing viral sequence segments, providing a potential explanation for how Ae. aegypti can tolerate the persistence of viral infections. This vsmRNA genomics approach in Ae. aegypti can add to existing vector surveillance approaches by discovering new viruses that persist in mosquito populations.
Project description:Virophages are small dsDNA viruses dependent on a nucleocytoplasmic large-DNA virus infection of a cellular host for replication. Putative virophages infecting algal hosts are classified together with Polinton-like viruses, transposable elements widely found in algal genomes, yet the lack of isolated strains raises questions about their existence as independent entities. We isolated and characterized a virophage (PgVV-14T) co-infecting Phaeocystis globosa with the Phaeocystis globosa virus-14T (PgV-14T).