Development and application of a scalable workflow for immunomagnetic separation of exRNA carrier subclasses and molecular analysis of their cargo.
Ontology highlight
ABSTRACT: Development and application of a scalable workflow for immunomagnetic separation of exRNA carrier subclasses and molecular analysis of their cargo.
Project description:Development and application of a scalable workflow for immunomagnetic separation of exRNA carrier subclasses and molecular analysis of their cargo.
Project description:An integrative analysis of human biofluid data in the exRNA Atlas revealed the existence of distinct extracellular RNA cargo types. To determine whether different RNA isolation kits biased detection of certain exRNA cargo types, an integrative analysis was performed using pooled plasma and serum samples, where 10 different RNA isolation kits were applied.
Project description:An integrative analysis of human biofluid data in the exRNA Atlas revealed the existence of distinct extracellular RNA cargo types. To gain further insight on the biological nature of these cargo types, we correlated exRNA Atlas cargo profiles with a variety of other RNA-seq profiles. This study focuses on lipoprotein particle (LPP) exRNA profiles obtained via sequential density ultracentrifugation (SD-UC) and fast protein liquid chromatography (FPLC).
Project description:An integrative analysis of human biofluid data in the exRNA Atlas revealed the existence of distinct extracellular RNA cargo types. To gain further insight on the biological nature of these cargo types, we correlated exRNA Atlas cargo profiles with a variety of other RNA-seq profiles. This study focuses on those samples obtained via ultracentrifugation and nanoscale deterministic lateral displacement (nanoDLD).
Project description:An integrative analysis of human biofluid data in the exRNA Atlas revealed the existence of distinct extracellular RNA cargo types. In order to detect differences in density between cargo types, cushioned density gradient ultracentrifugation (C-DGUC) of serum and plasma was performed using OptiPrem (TM) density gradient.
Project description:To evaluate performance of immunomagnetic separation, differential ultracentrifugation and size exculsion chromatography in the isolation of different extracellular RNA carriers from biofluids.