Project description:Highland barley liquor is a distilled spirit made from highland barley on the Tibetan Plateau, but its alcohol yield is limited by the high fiber content of the raw material. In the field of biomass resources, functional microorganisms are commonly used in pretreatment to degrade cellulose and other substances, improving fermentation output. In this study, we isolated the cellulose-degrading probiotic Lactobacillus delbrueckii GR-8 (CMCase 6.21 U/mL) from the traditional vegetable-based fermented food "Jiangshui" and applied biological pretreatment to the fermentation of highland barley liquor. During pretreatment, probiotics enhanced cellulase and amylase activities in the fermented grains, resulting in a 25% reduction in cellulose content and a 112% increase in free reducing sugar content. The pretreatment significantly altered the microbial community structure, enhancing microbial diversity. After distillation, alcohol yield increased by 3.5%, and total acid and ester contents rose by 25% and 23%, respectively. Pyrazine compounds increased by 1290%, while higher alcohols like nonanol, phenylethanol, and hexanol decreased. The treated liquor caused less harm to mice, who showed improved memory, motor skills, and lower oxidative liver damage. This study demonstrates that biological pretreatment enhances both fermentation and the quality of Chinese spirits.
Project description:The fermented and distilled Chinese alcoholic beverage strong flavor baijiu (SFB) gets its characteristic flavor during fermentation in cellars lined with pit mud. Microbes in the pit mud produce many key precursors of flavor esters. The over 20 year maturation time of natural pit mud have promoted attempts to produce artificial pit mud (APM) with shorter maturation time. However, knowledge on the molecular basis of APM microbial dynamics and associated functional variation during SFB brewing is limited, and the role of this variability in high quality SFB production remains poorly understood. We studied APM maturation in new cellars till the fourth brewing batch using 16S rRNA gene amplicon sequencing, real-time quantitative PCR and function prediction based on the sequencing results, and metaproteomics and metabolomics techniques. The results provide insight into global APM prokaryotic dynamics and their role in SFB production, which will be helpful for further optimization of APM culture technique and improvement of SFB quality.
2020-03-10 | PXD016140 |
Project description:16S rRNA amplicon data - Mixed culture butyrate fermentation
| PRJNA741687 | ENA
Project description:Studies on Chinese traditional fermentation starter,Jiuyao.