Project description:Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (> 100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions.
Project description:Expression and differential expression analysis of milk samples from healthy and diseased diary cows. Diseases were grouped by their occurrence in the mammary gland or extra-mammary. Furthermore, the diseases were classified by their severity. All cows were examined thoroughly by the dairy herd manager, trained staff, or a veterinarian. Expression and differential expression was assessed by using the Affymetrix Bovine Genome Array (GPL2112). Control animals (2-4 years old, 1st to 3th lactation, one animal 4th and one 8th lactation) showed no clinical signs of disease and had no abnormalities in the udder or milk. Their somatic cell count (SCC) was less than 100,000 cells/ml milk. Most of the control samples were taken during early lactation (10-100 days post-partum, dpp). Diseased cows were in their 1st to 8th lactation within 10-220 dpp.
Project description:M. Berg, J. Plöntzke, S. Leonhard-Marek, K.E. Müller & S. Röblitz. A dynamic model to simulate potassium balance in dairy cows. Journal of Dairy Science 100, 12 (2017).
High-performing dairy cows require a particular composition of nutritional ingredients, adapted to their individual requirements and depending on their production status. The optimal dimensioning of minerals in the diet, one being potassium, is indispensable for the prevention of imbalances. Potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, and it is closely related to glucose and electrolyte metabolism. In this paper, we present a dynamical model for potassium balance in lactating and nonlactating dairy cows based on ordinary differential equations. Parameter values were obtained from clinical trial data and from the literature. To verify the consistency of the model, we present simulation outcomes for 3 different scenarios: potassium balance in (1) nonlactating cows with varying feed intake, (2) nonlactating cows with varying potassium fraction in the diet, and (3) lactating cows with varying milk production levels. The results give insights into the short- and long-term potassium metabolism, providing an important step toward the understanding of the potassium network, the design of prophylactic feed additives, and possible treatment strategies.
Project description:Heat stress (HS) has become a major challenge in the dairy industry around the world. Although numerous measures have been taken to alleviate the HS impact on milk production, the cellular level response to HS remains unclear in dairy cows. The objective of this study was to dissect functional alterations based on transcriptomic dynamics in the liver of cows under HS. Dairy cows exposed to HS exhibited both decreased feed intake and milk yield. Through liver transcriptomic analysis, differentially expressed genes were identified among three experimental conditions, including heat stress (HS), pair-fed (PF), and thermoneutral (TN) groups. We observed the upregulation of protein folding and inflammation-related genes in the HS group, while the mitochondrial genes were downregulated. Gene functional enrichment also revealed that mitochondria function and oxidative phosphorylation were dysregulated under HS. The liver transcriptome analysis generated a comprehensive gene expression regulation network upon HS in lactating dairy cows. Overall, this study provides novel insights into molecular and metabolic changes of cows conditioned under HS. Our results could facilitate the development of efficient biomarkers to mitigate the negative effect of HS on dairy cow health and productivity.
Project description:The current situation of rising demand for animal products and sustainable resource usage, improving nutrient utilization efficiency in dairy cows is an important task. Understanding the biology of feed efficiency in dairy cows enables for the development of markers that may be used to identify and choose the best animals for animal production. Thus in this study, ten Holstein cows were evaluated for feed efficiency and adipose tissue samples from five high efficient and five low efficient dairy cows were collected for protein extraction, digestion and data were analyzed for differential abundant proteins enriched in feed efficiency pathways. Among the identified peptides, we found 110 DAPs and two protein networks significantly related to feed efficiency. Among the relative mRNA expression of genes involved in energy metabolism including transcription/translation (STAT2, DDX39A and RBM39) or protein transport (ITGAV), only RBM39 showed significant decrease in high efficient dairy cows. The findings presented here confirmed the Transferrin upregulated in pathways including acute phase response signaling, LXR/RXR activation, FXR/RXR activation of high efficient dairy cows supporting that these pathways are related to feed efficiency in dairy cows.
Project description:Bovine mastitis, the infection of the mammary gland which leads to great health and economic challenges for dairy farmers is accompanied by dramatic changes in the milk proteome. In this study of naturally occurring mastitis not only have the changes in the milk proteome been quantified in subclinical and clinical mastitis but simultaneous changes in the serum proteome have also been characterised and quantified. Milk and serum samples from healthy dairy cows (n=12) were compared to those of cows with subclinical (n=10) and clinical mastitis (n=112) using TMT label-based proteomic approach. The study included the milk and serum samples taken from thirty-two dairy cows ( kept on private farms located in Croatia. All cows were checked by physical examination. Somatic cells count (SCC) and mastitis test in milk samples were performed. According to the results, cows were assigned into three groups: Group I (control, n=10) consisted of healthy cows with SCC below 400,000 cells/ml on the monthly check-up and a negative mastitis test and without any clinical sign of mastitis. Group II (subclinical mastitis, n=12) comprised cows without clinical signs of mastitis but with SCC above 400,000 cells/ml on the monthly basis and a positive mastitis test at the time of sampling. Group III (clinical mastitis, n=10) consisted of cows with clinical signs of mastitis which include changes in milk appearance (flakes and clots in milk), different stages of udder inflammation (hyperemia, edema, pain, udder enlargement and elevated udder temperature) and disturbance of general health (depression, relaxed cold ears, dehydration, elevated body temperature, increased heart and respiratory rate, decreased ruminal contraction and decreased appetite). Blood samples were taken from v. coccygea and centrifuged at 3000 g for 15 min after clotting for two hours at room temperature. Serum samples were stored at -80°C until analysis. Milk samples were taken aseptically before the morning milking. First few streams were discarded. Teat ends were disinfected with cotton swabs soaked with 70% ethanol. Samples were taken into sterile tubes and transported to laboratory on ice within a few hours.
Project description:Nitrogen (N) emissions became a huge topic under environmental and nutrient concerns in dairy farming. Nitrogen is metabolized in cows as a consequence of feed crude protein digestion which is either recycled or excreted via urine, faeces and/or milk. In dairy cows differences between cows in N-recycling and N-emissions have been postulated. This study investigated 24 Holstein dairy cows in late lactation. The experimental design comprises two dietary groups (low (LP) vs normal (NP) crude protein) and two groups of milk urea content, high (HMU) vs low (LMU). Transcriptomic profiles of the liver, rumen, mammalian gland and kidney tissues were comparatively assessed by mRNA sequencing.
Project description:The severity of negative energy balance (NEB) in high-producing dairy cows has a high incidence among health diseases. The periparturient period is crucial for the health status and reproductive performance of dairy cows. During this period, dairy cows experience a transition from a pregnant, non-lactating state to a non-pregnant, lactating state. At the beginning of lactation, the energy needs for milk production are higher than the available energy consumed from feed intake, resulting in a negative energy balance (NEB)]. While in a NEB, cows mobilise their reserves from adipose tissue, resulting in elevated plasma concentrations of non-esterified fatty acids (NEFAs), which are used as a fuel source by peripheral tissues and the mammary gland for milk fat synthesis. Thus, white adipose tissue is one of the main tissue involved in the energy production during this transition period. So the objectives of our study were to dentify mRNA differentially expressed in white adipose before and after calving in dairy cow fed with low (LE) and high (HE) energy diet.