Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) with leptomeningeal dissemination and ZMIZ1::RET fusion
Ontology highlight
ABSTRACT: Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) with leptomeningeal dissemination and ZMIZ1::RET fusion
Project description:Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) with leptomeningeal dissemination and ZMIZ1::RET fusion [RNA-seq]
Project description:Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) with leptomeningeal dissemination and ZMIZ1::RET fusion [methylation array]
Project description:Herein we describe a case with histological, immunohistochemical and molecular features of GTAKA showing widespread leptomeningeal dissemination.
Project description:Herein we describe a case with histological, immunohistochemical and molecular features of GTAKA showing widespread leptomeningeal dissemination.
Project description:Glioneuronal tumor (GN) is one type of biphasic central nervous system (CNS) tumor that exhibits both glial and neuronal immunohistological characteristics. We report a case of glioneuronal tumor (GN) with a discovery of novel gene fusion of CLIP2-MET resulting from aberrant chromosome 7 abnormalities. The tumor exhibited typical characteristics on histological examinations. We executed an elaborate genomic study on this case including whole-exome sequencing and RNA sequencing. Genomic analysis of the tumor revealed aberrations in chromosomes 1 and 7 and a CLIP2-MET fusion. Further analysis of the upregulated genes revealed substantial connections with MAPK pathway activation. We concluded that the chromosome 7 abnormalities prompted CLIP2-MET gene fusion which successively leads to MAPK pathway activation. We deliberated that MAPK pathway activation is responsible for the oncogenesis of GN based on our case and other previously reported ones.
Project description:Myeloproliferative neoplasms are frequently associated with aberrant constitutive tyrosine kinase (TK) activity resulting from point mutations or chimaeric fusion genes, such as BCR ABL1 or JAK2 V617F. We report here for the first time in hematological malignancies, two novel fusion genes involving the TK RET, BCR-RET and FGFR1OP-RET, in chronic myelo monocytic leukemia (CMML) cases. The two RET fusion genes lead to the aberrant activation of RET, are able to transform hematopoietic cells and skew the hematopoietic differentiation program towards the monocytic/macrophage lineage. We also report that the BCR-RET fusion protein is insensitive to Imatinib but sensitive to Sorafenib in vivo. CMML is an hematopoietic malignancy associated with the frequent activation of the RAS pathway. The RET fusion genes seems to constitutively mimic the same signaling pathway than RAS mutations. Overall, the RET fusion genes behaviors in the monocytic lineage underlie the role of the normal RET TK activity during the physiological monocytic differentiation. We analysed BAF/3 cells infected by BCR-RET, FGFR1OP-RET or BCR-ABL1P210 fusion genes retroviruses and sorted out using EGFP fluorescence, with Affymetrix GeneChip MouseGene 1.0 ST platform.
Project description:Myeloproliferative neoplasms are frequently associated with aberrant constitutive tyrosine kinase (TK) activity resulting from point mutations or chimaeric fusion genes, such as BCR ABL1 or JAK2 V617F. We report here for the first time in hematological malignancies, two novel fusion genes involving the TK RET, BCR-RET and FGFR1OP-RET, in chronic myelo monocytic leukemia (CMML) cases. The two RET fusion genes lead to the aberrant activation of RET, are able to transform hematopoietic cells and skew the hematopoietic differentiation program towards the monocytic/macrophage lineage. We also report that the BCR-RET fusion protein is insensitive to Imatinib but sensitive to Sorafenib in vivo. CMML is an hematopoietic malignancy associated with the frequent activation of the RAS pathway. The RET fusion genes seems to constitutively mimic the same signaling pathway than RAS mutations. Overall, the RET fusion genes behaviors in the monocytic lineage underlie the role of the normal RET TK activity during the physiological monocytic differentiation.
Project description:Papillary thyroid cancer (PTC) is the most common type of endocrine malignancy. From a set of PTC patients whose tumor did not harbour any BRAF or RAS mutations, a 35 years old male patient’s normal, primary tumor and lymph node (LN) metastatic tissues were subjected to genomics and proteomics analysis. By RNA-seq analysis, we identified a novel RET rearrangement involving exons 1-4 from the 5’ end of the Trk fused Gene (TFG) fused to the 3’ end of RET tyrosine kinase leading to a TFG-RET fusion which transforms immortalized human thyroid cells in a kinase-dependent manner. Further, TFG-RET oncogene oligomerises in a PB1 domain-dependent manner and consistently, mutation of the oligomerisation interface led to the inhibition of RET-mediated oncogenic transformation. Quantitative proteomic analysis of the same samples revealed the upregulation of proteins involved in the ubiquitination machinery including E3 Ubiquitin ligase HUWE1 and DUBs like USP9X and UBP7 in both tumor and LN metastatic lesions. We further identified that expression of TFG-RET led to the upregulation of HUWE1. Further, in a cohort of PTC patients, we observed higher expression of HUWE1, USP9X and USP7 in the tumor and metastatic lesions, when compared to the matched normal tissue. Transient knockdown of HUWE1, USP9X and USP7 affected viability and proliferation of TFG-RET transformed cells. Consistently, inhibition of RET, HUWE1 and DUBs by small molecule inhibitors significantly reduced RET-mediated oncogenesis. Apart from unveiling a novel oncogenic RET fusion in PTCs, our data may open a novel avenue of targeting ubiquitin signaling machinery in human PTCs.