Project description:Roothans et al., analyzed heterotrophic denitrification processes that can be an important source of nitrous oxide. We employed planktonic nitrification-inhibited denitrifying enrichment cultures under alternating oxic-anoxic conditions. The dynamic conditions resulted in a general presence of the denitrifying enzymes. Overall, we show that aerobic denitrification should not be neglected as an ecologically relevant process. Contact author: m.laureni@tudelft.nl
Project description:Oxygen deficient zones (ODZs) are major sites of net natural oceanic nitrous oxide (N2O) production and emissions. In order to understand changes in the magnitude of N2O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N2O production and their regulation is needed. In the ODZ of the coastal area off Peru, the sensitivity of N2O production to oxygen and organic matter was investigated using 15N-tracer experiments in combination with qPCR and microarray analysis of total and active functional genes targeting archaeal amoA and nirS as marker genes for nitrification and denitrification, respectively. Denitrification was responsible for the highest N2O production with mean 8.7 nmol L-1 d-1 but up to 118 ± 27.8 nmol L-1 d-1 just below the oxic-anoxic interface. Highest N2O production from AO of 0.16 ± 0.003 nmol L-1 d-1 occurred in the upper oxycline at O2 concentrations of 10 - 30 µmol L-1 which coincided with highest archaeal amoA transcripts/genes. Oxygen responses of N2O production varied with substrate, but production and yields were generally highest below 10 µmol L-1 O2. Particulate organic matter additions increased N2O production by denitrification up to 5-fold suggesting increased N2O production during times of high particulate organic matter export. High N2O yields from ammonium oxidation of 2.1% were measured, but the overall contribution to N2O production stays an order of magnitude behind denitrification as an N2O source. Hence, these findings show that denitrification is the most important N2O production process in low oxygen conditions fueled by organic carbon supply which implies a positive feedback of the total oceanic N2O sources in response to increasing oceanic deoxygenation. [SUBMITTER_CITATION]: Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263-2287
Project description:Oxygen deficient zones (ODZs) are major sites of net natural oceanic nitrous oxide (N2O) production and emissions. In order to understand changes in the magnitude of N2O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N2O production and their regulation is needed. In the ODZ of the coastal area off Peru, the sensitivity of N2O production to oxygen and organic matter was investigated using 15N-tracer experiments in combination with qPCR and microarray analysis of total and active functional genes targeting archaeal amoA and nirS as marker genes for nitrification and denitrification, respectively. Denitrification was responsible for the highest N2O production with mean 8.7 nmol L-1 d-1 but up to 118 ± 27.8 nmol L-1 d-1 just below the oxic-anoxic interface. Highest N2O production from AO of 0.16 ± 0.003 nmol L-1 d-1 occurred in the upper oxycline at O2 concentrations of 10 - 30 µmol L-1 which coincided with highest archaeal amoA transcripts/genes. Oxygen responses of N2O production varied with substrate, but production and yields were generally highest below 10 µmol L-1 O2. Particulate organic matter additions increased N2O production by denitrification up to 5-fold suggesting increased N2O production during times of high particulate organic matter export. High N2O yields from ammonium oxidation of 2.1% were measured, but the overall contribution to N2O production stays an order of magnitude behind denitrification as an N2O source. Hence, these findings show that denitrification is the most important N2O production process in low oxygen conditions fueled by organic carbon supply which implies a positive feedback of the total oceanic N2O sources in response to increasing oceanic deoxygenation. [SUBMITTER_CITATION]: Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263-2287
Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone.
Project description:Plastics are one of the most preoccupying emerging pollutants. Macroplastics released in the environment degrade into microplastics and nanoplastics. Because of their small size, these micro and nano plastic particles can enter the food chain and, in addition to their ecotoxicological effects, contaminate humans with still poorly known biological effects. Plastics being particulate pollutants, they are handled in the human body by scavenger cells such as macrophages, which are important players in the immune system. Because of all the potential problems, it is advocated to replace fossil fuel-based plastics by bio-based and bio-degradable plastics, among which poly-hydroxyalkanoates are the most promising. However, the effects of these on mammalian cells are even less known than those of fossil fuel-based plastics. We therefore designed a study aiming at investigating the effects of polylactic acid (PLA) nanoparticles on macrophages. Indeed, being a plastic, PLA is known to fragment and liberate micro and nanoparticles, exactly as conventional plastics. These particles will be internalized by macrophages and may induce functional consequences on these cells. Proteomics showed important adaptive changes of the proteome in response to exposure to PLA, and several important pathways such as mitochondrion, lysosomes or endoplasmic reticulum were highlighted by the proteomic analysis. However, validation experiments showed that most of these changes were homeostatic and allowed the cells to keep these functions unaltered. When the inflammatory response was examined, no major increase in the secretion of tumor necrosis factor or interleukin 6 was observed. However, the secretion of these cytokines in response to lipopolysaccharide was altered after exposure to PLA. The production of interleukin 6 was decreased, while the production of tumor necrosis factor, showing a complex alteration of cellular responses after exposure to PLA nanoparticles. In conclusion, these results provide a better understanding of the responses of macrophages to exposure to the biodegradable PLA nanoparticles.
Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.