Project description:Study of genes that are differentially spliced and differentially expressed between African Americans and whites with lung squamous cell cancer. Despite racial disparities in lung cancer, the molecular landscape of lung cancer in patients of African ancestry remains underexplored. Population-related differences in alternative RNA splicing have not been explored. We identified differentially spliced genes and differentially expressed genes between lung squamous cell carcinoma from patients of West African and European ancestry.
Project description:Individuals of African descent in the United States suffer disproportionately from diseases with a metabolic etiology (obesity, metabolic syndrome, and diabetes), and from the pathological consequences of these disorders (hypertension and cardiovascular disease). Using a combination of genetic/genomic and bioinformatics approaches, we identified a large number of genes that were both differentially expressed between American subjects self-identified to be of either African or European ancestry and that also contained single nucleotide polymorphisms that distinguish distantly related ancestral populations. Several of these genes control the metabolism of simple carbohydrates and are direct targets for the SREBP1, a metabolic transcription factor also differentially expressed between our study populations. These data support the concept of stable patterns of gene transcription unique to a geographic ancestral lineage. The coordinated transcriptional adaptation of carbohydrate metabolism to dietary environmental pressures suggests a genetic and transcriptional mechanism for the disproportionate levels of obesity, diabetes, and cardiovascular disease observed in Americans with African ancestry. Keywords: Ancestry-dependent gene expression, functional genomics, personalized medicine, multi-factoral disease, nutrition, diabetes
Project description:Women of sub-Saharan African descent have disproportionately higher incidence of Triple Negative Breast Cancer (TNBC), and TNBC-specific mortality. Population comparative studies show racial differences in TNBC biology, including higher prevalence of basal-like and Quadruple-Negative subtypes in African Americans (AA). However, previous investigations relied on self-reported race (SRR) of primarily United States (US) populations. Due to heterogenous genetic admixture, and biological consequences of social determinants, the true association of African ancestry with TNBC biology is unclear. To address this, we conducted RNAseq on an international cohort of AAs, west and east Africans with TNBC. Using comprehensive genetic ancestry estimation in this African-enriched cohort, we found expression of 613 genes associated with African ancestry and 2000+ associated with regional African ancestry. A subset of African-associated genes also showed differences in normal breast tissue. Pathway enrichment and deconvolution of tumor cellular composition revealed tumor-associated immunological profiles are distinct in patients of African descent.
Project description:Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. 12% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 569 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting eQTL. Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are central to coping with infection. Transcriptomic profiles of 503 infected (Listeria and Salmonella) and non-infected samples at 2hr time point.
Project description:Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. 12% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 569 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting eQTL. Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are central to coping with infection.
Project description:Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. A total of 9.3% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 804 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting expression quantitative trait locus (eQTL). Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are key to controlling infection.
Project description:Individuals of African descent in the United States suffer disproportionately from diseases with a metabolic etiology (obesity, metabolic syndrome, and diabetes), and from the pathological consequences of these disorders (hypertension and cardiovascular disease). Using a combination of genetic/genomic and bioinformatics approaches, we identified a large number of genes that were both differentially expressed between American subjects self-identified to be of either African or European ancestry and that also contained single nucleotide polymorphisms that distinguish distantly related ancestral populations. Several of these genes control the metabolism of simple carbohydrates and are direct targets for the SREBP1, a metabolic transcription factor also differentially expressed between our study populations. These data support the concept of stable patterns of gene transcription unique to a geographic ancestral lineage. The coordinated transcriptional adaptation of carbohydrate metabolism to dietary environmental pressures suggests a genetic and transcriptional mechanism for the disproportionate levels of obesity, diabetes, and cardiovascular disease observed in Americans with African ancestry. Keywords: Ancestry-dependent gene expression, functional genomics, personalized medicine, multi-factoral disease, nutrition, diabetes We utilized a “sample x reference” experimental design strategy in which RNA extracted from human peripheral blood mononuclear cells was hybridized to the microarray slide in the presence of labeled Universal Human Reference RNA (UHRR, Stratagene, LaJolla, CA). A total of 161 subjects were used in this analysis. Briefly, five hundred nanograms of total RNA were used for gene expression profiling following reverse transcription and T-7 polymerase-mediated amplification/labeling with Cyanine-5 CTP. Labeled subject cRNA was co-hybridized to Agilent G4112A Whole Human Genome 44K oligonucleotide arrays with equimolar amounts of Cyanine-3 labeled UHRR. Slides were hybridized, washed, and scanned on an Axon 4000b microarray scanner. The data were processed using GenePix Pro 6 software
Project description:Variation in gene expression is a fundamental aspect of human phenotypic variation. Several studies have analyzed gene expression levels in populations of different continental ancestry, and concluded that there is variation across populations at a fraction of expressed genes. Here we analyze gene expression levels in African American cell lines, which differ from previously analyzed cell lines in that samples from this population have variable proportions of continental ancestry. We show that for most genes examined, gene expression varies with genetic ancestry. Keywords: Human Gene Expression Study
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes