Project description:We used 16S V3/V4 region amplification to evaluate the composition of bacteria species in mouse fecal pellets. Fecel pellets were collected from young-adult (12 weeks old) wild type C57Bl/6 mice and aged (72 weeks old) wild type C57Bl/6 mice after 21 days of vehicle or antibiotics treatment (to induce gut microbiota depletion). In one sequencing round, we sequenced a total of 12 different fecal samples (3 young control, 3 aged control, 3 young depleted gut microbiota (ABX) and 3 aged depleted gut microbiota (ABX)). Amplicons were indexed using the Nextera XT Index Kit and pooled into a library for Illumina sequencing.
Project description:v3-v4 16S rRNA sequencing was used to characterize both gut and oral microbiota composition of RCC (refractory chronic cough) patients and matched healthy controls (HC). The groups are matched in age and gender.
Project description:Fecal samples collected on day 5 from randomly selected colitic SD rats were analyzed for gut microbiota by sequencing the V4 region of the 16S rRNA gene. The orally administered Dex-P-laden NPA2 coacervate (Dex-P/NPA2) significantly restores the diversity of gut microbiota compared with colitic SD rats in the Dex-P/PBS group and the untreated colitic rats (Control).
Project description:v3-v4 16S rRNA sequencing was used to characterize the differences in microbiota between specimens of breast cancer and healthy surrounding tissue in adult Algerian females
Project description:Ulcerative colitis (UC) is a chronic inflammatory disease of the colon, associated with gut microbiota dysbiosis. While global studies have explored this link, region-specific microbial profiles remain underreported. This pilot study aimed to characterize and compare, for the first time, the gut microbiota of Lebanese UC patients and healthy controls using 16S rRNA gene sequencing (V3–V4 region). Fecal samples from 11 UC patients and 11 healthy individuals were analyzed. Alpha and beta diversity metrics were computed, and gut microbial composition was assessed across taxonomic levels. Statistical comparisons used Mann-Whitney and Fisher’s exact tests. UC patients showed significantly reduced microbial diversity based on Faith’s Phylogenetic Diversity and Shannon index (p < 0.05), though evenness was unaffected. Beta diversity also revealed significant group-level dissimilarities (p < 0.05). At the phylum level, Bacteroidota was elevated in UC, while Bacillota and Actinomycetota were reduced. Genera such as Ruminococcus, Fusicatenibacter, Mediterraneibacter, Eubacterium, and Coprococcus were depleted in UC. Faecalibacterium, commonly reduced in UC, showed no significant difference. This first analysis of gut microbiota in Lebanese UC patients reveals a distinct microbial signature that partially diverges from global trends, supporting the need for region-specific microbiome studies and personalized microbiota-targeted therapies.
Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.
Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.
Project description:Gut microbial profiling of uterine fibroids (UFs) patients comparing control subjects. The gut microbiota was examined by 16S rRNA quantitative arrays and bioinformatics analysis. The goal was to reveal alterations in the gut microbiome of uterine fibroids patients.
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.