Project description:RNA from skeletal muscle of mice over-expressing selectively in the skeletal muscle the gene FRG1, a candidate of facioscapulohumeral muscular dystrophy, was compared to RNA from skeletal muscle of WT mice. Total RNA obtained from isolated vastus lateralis muscles of 4 weeks old females WT mice and vastus lateralis muscles of 4 weeks old mice over-expressing FRG1, FSHD region gene 1.
Project description:Facioscapulohumeral dystrophy (FSHD) is caused by decreased epigenetic repression of the D4Z4 macrosatellite array and recent studies have shown that this results in the expression of low levels of the DUX4 mRNA in skeletal muscle. Several other mechanisms have been suggested for FSHD pathophysiology and it remains unknown whether DUX4 expression can account for most of the molecular changes seen in FSHD. Since DUX4 is a transcription factor, we used RNA-seq to measure gene expression in muscle cells transduced with DUX4, and in muscle cells and biopsies from control and FSHD individuals. We show that DUX4 target gene expression is the major molecular signature in FSHD muscle together with a gene expression signature consistent with an immune cell infiltration. In addition, one unaffected individual without a known FSHD-causing mutation showed expression of DUX4 target genes. This individual has a sibling with FSHD and also without a known FSHD-causing mutation, suggesting the presence of yet unidentified modifier locus for DUX4 expression and FSHD. These findings demonstrate that expression of DUX4 accounts for the majority of the gene expression changes in FSHD skeletal muscle together with an immune cell infiltration. RNA-seq for muscle cells and biopsies from control and FSHD individuals.
Project description:Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder linked to contractions of the D4Z4 repeat array in the subtelomeric region of chromosome 4q. By comparing genome-wide gene expression data from muscle biopsies of patients with FSHD to those of 11 other neuromuscular disorders, we intend to identify disease-specific changes which are more likely to be involved in the early stages of the disease progression. The data will help to identify pathological mechanisms involved in FSHD. Experiment Overall Design: Comparison of the profiles of FSHD to 13 other conditions for disease-specific changes. The 13 conditions are NHM (Normal healthy muscle) n=15; JDM (Juvenile dermatomyositis) n=25; HSP (Human spastic paraplegia) n=4; FSHD (facioscapulohumeral dystrophy) unaffected n=5, affected n=9; FKRP (Fukutin related protein deficiency) n=7; ED-L (Emery-Dreifuss muscular dystrophy, lamin A/C deficiency) n=4; ED-E (Emery-Dreifuss muscular dystrophy, emerin deficiency) n=4; DYSF (dysferlinopathy) n=10; DMD (Duchenne Muscular Dystrophy) n=10; CALP (Calpain-3 deficiency) n=10; BMD (Becker Muscular Dystrophy) n=5; AQM (Acute quadriplegic myopathy) n=5; ALS (Amyotrophic lateral sclerosis) n=9.
Project description:Facioscapulohumeral dystrophy (FSHD) is caused by decreased epigenetic repression of the D4Z4 macrosatellite array and recent studies have shown that this results in the expression of low levels of the DUX4 mRNA in skeletal muscle. Several other mechanisms have been suggested for FSHD pathophysiology and it remains unknown whether DUX4 expression can account for most of the molecular changes seen in FSHD. Since DUX4 is a transcription factor, we used RNA-seq to measure gene expression in muscle cells transduced with DUX4, and in muscle cells and biopsies from control and FSHD individuals. We show that DUX4 target gene expression is the major molecular signature in FSHD muscle together with a gene expression signature consistent with an immune cell infiltration. In addition, one unaffected individual without a known FSHD-causing mutation showed expression of DUX4 target genes. This individual has a sibling with FSHD and also without a known FSHD-causing mutation, suggesting the presence of yet unidentified modifier locus for DUX4 expression and FSHD. These findings demonstrate that expression of DUX4 accounts for the majority of the gene expression changes in FSHD skeletal muscle together with an immune cell infiltration.
Project description:Muscle biopsies taken from vastus lateralis muscle of 30 normal subjects and 19 FSHD subjects (see PubMed ID 17151338) Affymetrix U133A and U133B arrays were scanned both before (S1) and after (S2) antibody enhancement. Effects of age and sex in normal subjects reported previously under GSE362, GSE674, and GSE9676. Keywords: facioscapulohumeral dystrophy, skeletal muscle
Project description:Muscle biopsies from biceps and deltoid were taken from 5 patients with FSHD, 5 asymptomatic carriers and 5 normal controls. The genome-wide expression patterns were compared using Affymetrix U133 Plus 2.0 chips. Keywords: Facioscapulohumeral, FSHD, muscular dystrophy Gene expression profiles were generated for 15 individuals (5 affected patients, 5 asymptomatic carriers and 5 healthy controls)
Project description:Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disorder caused by contractions of repetitive elements within the macrosatellite D4Z4 on chromosome 4q35. In order to develop mRNA-based biomarkers of affected muscles, we used GeneChip Gene 1.0 ST arrays for global analysis of gene expression in muscle biopsy specimens obtained from FSHD subjects and their unaffected first degree relatives. FSHD typically affects biceps muscles more severely than deltoid muscles. To examine muscle-specific expression changes associated with FSHD while controlling for background genetic variation, we analyzed RNA extracted from both biceps and deltoids of FSHD subjects and unaffected first-degree relatives.
Project description:Muscle biopsies from biceps and deltoid were taken from 5 patients with FSHD, 5 asymptomatic carriers and 5 normal controls. The genome-wide expression patterns were compared using Affymetrix U133 Plus 2.0 chips. Keywords: Facioscapulohumeral, FSHD, muscular dystrophy
Project description:Expression data from 22 human myotubes (7 healthy controls, 4 Dysferlinopathy (DYSF), 4 Caveolinopathy 3 (CAV3), 4 Facioscapulohumeral muscular dystrophy(FSHD) and 3 Four and a half LIM 1 protein deficiency FHL1).cDNA microarray data showed that cyclin A1 levels are specifically elevated in FSHD vs. other muscular disorders such as CAV3, DYSF, FHL1 and healthy control. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated levels of cyclin A1 also on the protein level. Comparison of gene expression among 4 different muscular dystrophies and helathy controls. Looking for genes expression specifically changed (down/upregulated) in FSHD. In these data sheet we include expression data obtained for human cells lines derived from human V.lateralis muscle, shown as mean value. From 59 different expressed genes, Cyclin A1 was selected as a highly overexpressed (28 fold) gene in FSHD if compared to DYSF, CAV3, FHL1 and healyhy controls. Expression data from 22 human myotubes (7 healthy controls, 4 Dysferlinopathy (DYSF), 4 Caveolinopathy 3 (CAV3), 4 Facioscapulohumeral muscular dystrophy(FSHD) and 3 Four and a half LIM 1 protein deficiency FHL1)
Project description:Facioscapulohumeral muscular dystrophy (FSHD) is a hereditary myopathy linked to deletions of the tandemly arrayed D4Z4 macrosatellite repeats at human chromosome 4q35. These deletions accompany local chromatin changes and the anomalous expression of nearby genes FRG2A, DBET, and D4Z4. We discovered that FRG2A is one member of a family of long non-coding RNAs (lncRNA) expressed at elevated levels in skeletal muscle cells in an individual-specific manner. We found that FRG2A lncRNA preferentially associates with rDNA sequences and centromeres, and also promotes the three-dimensional association of centromeres with the nucleolar periphery in FSHD samples. Furthermore, we demonstrate that the elevated FRG2A expression in cells from FSHD patients reduces rDNA transcription and protein synthesis rates.Our results frame a new disease model in which elevated lncRNA expression mediated by deletions of D4Z4 macrosatellite repeats leads to a diminished protein synthesis capacity, thereby contributing to muscle wasting.