Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
2016-12-10 | GSE91083 | GEO
Project description:bacterial community structure in rhizosphere soil under continuous sesame cropping
Project description:Arsenic (As) bioavailability in the rice rhizosphere is influenced by many microbial interactions, particularly by metal-transforming functional groups at the root-soil interface. This study was conducted to examine As-transforming microbes and As-speciation in the rice rhizosphere compartments, in response to two different water management practices (continuous and intermittently flooded), established on fields with high to low soil-As concentration. Microbial functional gene composition in the rhizosphere and root-plaque compartments were characterized using the GeoChip 4.0 microarray. Arsenic speciation and concentrations were analyzed in the rhizosphere soil, root-plaque, porewater and grain samples. Results indicated that intermittent flooding significantly altered As-speciation in the rhizosphere, and reduced methyl-As and AsIII concentrations in the pore water, root-plaque and rice grain. Ordination and taxonomic analysis of detected gene-probes indicated that root-plaque and rhizosphere assembled significantly different metal-transforming functional groups. Taxonomic non-redundancy was evident, suggesting that As-reduction, -oxidation and -methylation processes were performed by different microbial groups. As-transformation was coupled to different biogeochemical cycling processes establishing functional non-redundancy of rice-rhizosphere microbiome in response to both rhizosphere compartmentalization and experimental treatments. This study confirmed diverse As-biotransformation at root-soil interface and provided novel insights on their responses to water management, which can be applied for mitigating As-bioavailability and accumulation in rice grains.
2021-07-12 | GSE179671 | GEO
Project description:Rhizosphere soil microorganisms in cucumber continuous cropping
| PRJNA686476 | ENA
Project description:continuous cropping soil
| PRJNA482921 | ENA
Project description:Study on rhizosphere soil bacteria of continuous cropping peanut
| PRJNA838988 | ENA
Project description:Study on rhizosphere soil fungi of continuous cropping peanut
Project description:Cover cropping is an effective method to protect agricultural soils from erosion, promote nutrient and moisture retention, encourage beneficial microbial activity, and maintain soil structure. Reusing winter cover crop root channels with the maize roots during the summer allows the cash crop to extract resources from farther niches in the soil horizon. In this study, we investigate how reusing winter cover crop root channels to grow maize (Zea mays L.) affects the composition and function of the bacterial communities in the rhizosphere using 16S rRNA gene amplicon sequencing and metaproteomics. We discovered that the bacterial community significantly differed among cover crop variations, soil profile depths, and maize growth stages. Re-usage of the root channels increased bacterial abundance, and it further increases as we elevate the complexity from monocultures to mixtures. Upon mixing legumes with brassicas and grasses, the overall expression of several steps of the carbon cycle (C) and the nitrogen cycle (N) improved. The deeper root channels of legumes and brassicas compared to grasses correlated with higher bacterial 16S rRNA gene copy numbers and community roles in the respective variations in the subsoil regimes due to the increased availability of root exudates secreted by maize roots. In conclusion, root channel re-use (monocultures and mixtures) improved the expression of metabolic pathways of the important C and N cycles, and the bacterial communities, which is beneficial to the soil rhizosphere as well as to the growing crops.