Project description:Colonization of deep-sea hydrothermal vents by invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers of these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts on the deep-sea mussel Bathymodiolus azoricus’ molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels
Project description:Biofilms are sessile microbial communities that are often resistant to conventional antimicrobial therapeutics and the host immune system. Candida albicans is an opportunistic pathogenic yeast and responsible for candidiasis. It readily colonizes host tissues and implant devices, and forms biofilms, which play an important role in pathogenesis and drug resistance. Its morphological transition from budding yeast to hyphal form and subsequent biofilm formation is regarded as the crucial factor for drug tolerance and virulence of Candida infections. In this study, nepodin (also called musizin) from Rumex japonicus root was investigated for antibiofilm, antihyphae, and antivirulence activities against fluconazole-resistant C. albicans strain. Nepodin at 2 µg/ml from Rumex plant effectively inhibited C. albicans biofilm formation by more than 90% but had no effect on planktonic cell growth. Also, Rumex root extract and nepodin inhibited hyphal growth and cell aggregation of C. albicans. Interestingly, nepodin also showed antibiofilm activity against Staphylococcus aureus or A. baumannii strains and two systems of dual biofilms of C. albicans and S. aureus or A. baumannii, respectively. Transcriptomic analysis using RNA-seq and qRT-PCR showed nepodin repressed the expressions of several hypha/biofilm related genes (ECE1, HWP1, and UME6) and overexpressed several transport genes (CDR4, CDR11, IFD6, and TPO2), which supported observed phenotypic changes.