Project description:In this study, we performed the gene expression analysis of the Normal, Diabetic and AAT treated NOD mice to elucidate the transcriptional changes induced by AAT. This will assist in identifying the biological processes / pathways involved in curative mechanism of AAT. Keywords: alpha1 antitrypsin treatment
Project description:Type 1 diabetes (T1D) results from autoimmune destruction of β cells in the pancreas. Protein tyrosine phosphatases (PTPs) are candidate genes for T1D and play a key role in autoimmune disease development and β-cell function. Here, we assessed the global protein and individual PTP profile in the pancreas of diabetic NOD mice treated with anti-CD3 mAb and IL-1RA combination therapy. The treatment reversed hyperglycemia compared to the anti-CD3 alone control group. We observed enhanced expression of PTPN2, a T1D candidate gene, and endoplasmic reticulum (ER) chaperones in the islets from cured mice.
Project description:Type 1 and type 2 diabetes (T1D and T2D) share pathophysiological characteristics, yet mechanistic links have remained elusive. T1D results from autoimmune destruction of pancreatic beta cells, while beta cell failure in T2D is delayed and progressive. Here we find a new genetic component of diabetes susceptibility in T1D non-obese diabetic (NOD) mice, identifying immune-independent beta cell fragility. Genetic variation in Xrcc4 and Glis3 alter the response of NOD beta cells to unfolded protein stress, enhancing the apoptotic and senescent fates. The same transcriptional relationships were observed in human islets, demonstrating the role for beta cell fragility in genetic predisposition to diabetes.
Project description:In this study, we performed the gene expression analysis of the Normal, Diabetic and AAT treated NOD mice to elucidate the transcriptional changes induced by AAT. This will assist in identifying the biological processes / pathways involved in curative mechanism of AAT. Experiment Overall Design: Duplicate samples of Normal, Diabetic and AAT treated NOD mice were analyzed.
Project description:Appropriate tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with highly variable demand for insulin synthesis. An efficient UPR ensures a sufficient beta cell mass and secretory output but can also affect beta cell resilience to autoimmune aggression. However, the factors regulating protein homeostasis in the face of metabolic and immune challenges are insufficie tly understood. We examined beta cell adaptation to stress in mice deficient for insulin-degrading enzyme (IDE), a ubiquitous protease with high affinity for insulin, a putative ill-defined role in protein homeostasis, and genetic association with type 2 diabetes. IDE deficiency induces a low-level UPR in both standard and autoimmune non-obese diabetic (NOD) mice, associated with rapamycin-sensitive beta cell proliferation, as well as protection from diabetes in NOD mice. Moreover, in NOD islets, IDE deficiency specifically induces strong upregulation of regenerating islet-derived protein 2, a protein attenuating inflammation and protecting from autoimmunity. Our findings establish a role of IDE in islet cell protein homeostasis, corroborate the link between low-level UPR and proliferation, and identify an anti-inflammatory islet cell response uncovered in the absence of IDE of potential interest in autoimmune diabetes.
Project description:As early as one month of age, nonobese diabetic (NOD) mice feature pancreatic infiltration of autoreactive T lymphocytes, which destruct insulin-producing beta cells, producing autoimmune diabetes mellitus (T1D) within eightmonths. Thus, we hypothesized that during the development of T1D, the transcriptional modulation of immune reactivity genes may occur as thymocytes mature into peripheral T lymphocytes. The transcriptome of thymocytes and peripheral CD3+ T lymphocytes from prediabetic or diabetic mice analyzed through microarray hybridizations identified the differentially expressed genes.
Project description:As early as one month of age, nonobese diabetic (NOD) mice feature pancreatic infiltration of autoreactive T lymphocytes, which destruct insulin-producing beta cells, producing autoimmune diabetesmellitus (T1D) within eight months. Thus, we hypothesized that during the development of T1D, the transcriptional modulation of immune reactivity genes may occur as thymocytes mature into peripheral T lymphocytes. The transcriptome of thymocytes and peripheral CD3+ T lymphocytes from prediabetic or diabetic mice analyzed through microarray hybridizations identified the differentially expressed genes.
Project description:Characterize how Balb/c mice responses to aerosolized LPS (lipopolysaccharide) alone or with intraperitoneal (i.p.) delivery of alpha1-antitrypsin (AAT)
Project description:Background: Activation of stress pathways intrinsic to the β cell are thought to both accelerate β cell death and increase β cell immunogenicity in type 1 diabetes (T1D). However, information on the timing and scope of these responses is lacking. Methods: To identify temporal and disease-related changes in islet β cell protein expression, SWATH-MS/MS proteomics analysis was performed on islets collected longitudinally from NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer. Findings: In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted upregulation of proteins involved in the maintenance of β cell function and stress mitigation, followed by loss of expression of protective proteins that heralded diabetes onset. Pathway analysis identified EIF2 signaling and the unfolded protein response, mTOR signaling, mitochondrial function, and oxidative phosphorylation as commonly modulated pathways in both diabetic NOD mice and NOD-SCID mice rendered acutely diabetic by adoptive transfer, highlighting this core set of pathways in T1D pathogenesis. In immunofluorescence validation studies, β cell expression of protein disulfide isomerase A1 (PDIA1) and 14-3-3b were found to be increased during disease progression in NOD islets, while PDIA1 plasma levels were increased in pre-diabetic NOD mice and in the serum of children with recent-onset T1D compared to age and sex-matched non-diabetic controls. Interpretation: We identified a common and core set of modulated pathways across distinct mouse models of T1D and identified PDIA1 as a potential human biomarker of β cell stress in T1D.