Project description:Microplastics are defined as plastics ranging in size from 0.1μm to 5mm. Currently, research is being conducted across various fields to examine the effects of microplastics. Some studies demonstrated negative impacts on cells and mice. However, there is a lack of research on the effects by long-term exposure to microplastics. Most of the papers evaluated cytotoxicity with period of less than 2 months. Therefore, in this study, we investigated the potential issues that may arise from prolonged exposure through food mixed with Polypropylene black microplastic (PB-MP) for over a year. We divided our study into short, mid, and long-term periods to assess cytotoxicity through Glucose tolerance test, Insulin tolerance test, analysis of insulin and c-peptide levels, hanging, grip, treadmill, Y-maze and open field tests, Respiratory Exchange Ratio, Energy Expenditure, Activity, and body composition. Through this, we comprehensively examined potential issues related to mouse behavior, muscle, metabolism and other factors. After dissection, RNA sequencing was carried out to investigate the effects on genes. For further verification, RT-qPCR was conducted. To summarize, our study provides evidence suggesting that treatment of microplastics for a short term has adverse effects, but with prolonged exposure, their effects tend to diminish.
Project description:Microplastics are defined as plastics ranging in size from 0.1μm to 5mm. Currently, research is being conducted across various fields to examine the effects of microplastics. Some studies demonstrated negative impacts on cells and mice. However, there is a lack of research on the effects by long-term exposure to microplastics. Most of the papers evaluated cytotoxicity with period of less than 2 months. Therefore, in this study, we investigated the potential issues that may arise from prolonged exposure through food mixed with Polypropylene microplastic (PP-MP) for over a year. We divided our study into short, mid, and long-term periods to assess cytotoxicity through Glucose tolerance test, Insulin tolerance test, analysis of insulin and c-peptide levels, hanging, grip, treadmill, Y-maze and open field tests, Respiratory Exchange Ratio, Energy Expenditure, Activity, and body composition. Through this, we comprehensively examined potential issues related to mouse behavior, muscle, metabolism and other factors. After dissection, RNA sequencing was carried out to investigate the effects on genes. For further verification, RT-qPCR was conducted. To summarize, our study provides evidence suggesting that treatment of microplastics for a short term has adverse effects, but with prolonged exposure, their effects tend to diminish.
Project description:Microplastics are defined as plastics ranging in size from 0.1μm to 5mm. Currently, research is being conducted across various fields to examine the effects of microplastics. Some studies demonstrated negative impacts on cells and mice. However, there is a lack of research on the effects by long-term exposure to microplastics. Most of the papers evaluated cytotoxicity with period of less than 2 months. Therefore, in this study, we investigated the potential issues that may arise from prolonged exposure through food mixed with Polyethylene microplastic (PE-MP) for over a year. We divided our study into short, mid, and long-term periods to assess cytotoxicity through Glucose tolerance test, Insulin tolerance test, analysis of insulin and c-peptide levels, hanging, grip, treadmill, Y-maze and open field tests, Respiratory Exchange Ratio, Energy Expenditure, Activity, and body composition. Through this, we comprehensively examined potential issues related to mouse behavior, muscle, metabolism and other factors. After dissection, RNA sequencing was carried out to investigate the effects on genes. For further verification, RT-qPCR was conducted. To summarize, our study provides evidence suggesting that treatment of microplastics for a short term has adverse effects, but with prolonged exposure, their effects tend to diminish.
Project description:Microplastics are defined as plastics ranging in size from 0.1μm to 5mm. Currently, research is being conducted across various fields to examine the effects of microplastics. Some studies demonstrated negative impacts on cells and mice. However, there is a lack of research on the effects by long-term exposure to microplastics. Most of the papers evaluated cytotoxicity with period of less than 2 months. Therefore, in this study, we investigated the potential issues that may arise from prolonged exposure through food mixed with Polystyrene microplastic (PS-MP) for over a year. We divided our study into short, mid, and long-term periods to assess cytotoxicity through Glucose tolerance test, Insulin tolerance test, analysis of insulin and c-peptide levels, hanging, grip, treadmill, Y-maze and open field tests, Respiratory Exchange Ratio, Energy Expenditure, Activity, and body composition. Through this, we comprehensively examined potential issues related to mouse behavior, muscle, metabolism and other factors. After dissection, RNA sequencing was carried out to investigate the effects on genes. For further verification, RT-qPCR was conducted. To summarize, our study provides evidence suggesting that treatment of microplastics for a short term has adverse effects, but with prolonged exposure, their effects tend to diminish.
2025-04-17 | GSE261725 | GEO
Project description:studies of lipid metabolism on fish liver
Project description:Exposure to PFOA during gestation altered the expression of genes related to fatty acid catabolism in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with activation of PPAR alpha. Non-PPAR alpha related changes were suggested as well. Keywords: gene expression, microarray,PFOA, mouse, fetus, liver
Project description:"Liver represents one of the most important organs involved in the elimination of xenobiotic and potentially toxic substances. Cigarette smoke (CS) contains more than 7000 chemicals, among which compounds that exert biological effects and cause smoking-related diseases. Although CS is not directly hepatotoxic, a growing body of evidence suggests that it may exacerbate (pre-existing) chronic liver diseases. Here we integrated toxicological endpoints with molecular measurements and computational analysis approaches to investigate exposure effects on liver in an Apoe-/- mouse study. The mice were exposed to high concentrations of 3R4F reference CS (600 mg/m3 TPM, 29.9 mg/m3 nicotine), an aerosol from a candidate reduced risk product (RRP) the Tobacco Heating System (THS) 2.2 at matching nicotine concentration, or filtered air (Sham) for up to 8 months. THS2.2 was conceived using the heat-not-burn technology that heats tobacco avoiding pyrogenesis and pyrosynthesis. After 2 months of CS exposure, some groups were either switched to the RRP or underwent exposure cessation. While clear signs of hepatotoxic effects were absent for any exposure group, the integrative analysis of proteomics and transcriptomics data showed a CS-dependent impairment of specific biological networks, including lipid and xenobiotic metabolism, and iron homeostasis, which likely in turn mutually contribute to worsening of the oxidative stress. In contrast, most of these changes were absent in mice exposed to THS2.2, and in the cessation and switching groups. Our findings shed light on the complex biological response of the liver to CS exposure and support the benefits of switching to the tested heat-not-burn product, THS2.2."
Project description:Microplastics (MPs) have become a serious global environmental threat that causes damage to mammalian organs. In this work, we investigated the potential molecular mechanism underlying the development of liver fibrosis induced by long-term exposure to three different sized PS-MPs (80 nm, 0.5 µm and 5 µm) in mice. Liver fibrosis levels were evaluated in mice after chronic exposure to PS-MPs. Liver inflammation was mainly increased in chronic exposure to 80 nm and 0.5 µm PS-MPs. Liver lipid deposition was significantly enhanced after PS-MP exposure. However, oxidative stress was not changed under PS-MP exposure. GO enrichment and KEGG pathway analyses revealed that the DEGs and shared DEGs were mainly enriched in the metabolism of lipids. The mRNA expression levels of genes related to fatty acid oxidation, synthesis and transport were dramatically induced by PS-MP exposure. Four hub genes, Acot3, Abcc3, Nr1i3 and Fmo2, were identified by CytoHubba analysis of shared DEGs. The mRNA expression levels of three hub genes, Acot3, Abcc3 and Nr1i3, were significantly augmented under chronic PS-MP exposure. Our results suggest that Acot3, Abcc3 and Nr1i3 are potential molecules involved in the development of liver fibrosis under chronic exposure to PS-MPs.
Project description:The contamination of marine ecosystems with microplastics, such as the polymer polyethylene, a commonly used component of single-use packaging, is of global concern. Although it has been suggested that biodegradable polymers, such as polylactic acid, may be used to replace some polyethylene packaging, little is known about their effects on marine organisms. Blue mussels, Mytilus edulis, have become a “model organism” for investigating the effects of microplastics in marine ecosystems. We show here that repeated exposure, over a period of 52 days in an outdoor mesocosm setting, of M. edulis to polyethylene microplastics reduced the number of byssal threads produced and the attachment strength (tenacity) by ~50%. Exposure to either type of microplastic altered the haemolymph proteome and, although a conserved response to microplastic exposure was observed, overall polyethylene resulted in more changes to protein abundances than polylactic acid. Many of the proteins affected are involved in vital biological processes, such as immune- and stress- regulation, metabolism and cellular and structural development. Our study highlights the utility of mass spectrometry-based proteomics to assess the health of key marine organisms and identifies the potential mechanisms by which microplastics, both conventional and biodegradable, could affect their ability to form and maintain reefs.