Project description:Transformation of undifferentiated stem cells into cells with special functions is central for organismal development. The phloem tissue mediates long-distance transport of energy metabolites along plant bodies and is characterized by an exceptional degree of cellular specialization. How the phloem-specific developmental program is implemented is, however, unknown. Here we reveal that the ubiquitously expressed PHD-finger protein OBERON3 (OBE3) and the phloem-specific SUPPRESSOR OF MAX2 1-LIKE 5 (SMXL5) protein form a central module for establishing phloem identity in Arabidopsis thaliana (Arabidopsis). By phloem-specific ATAC-seq analyses, we show that OBE3 and SMXL5 proteins establish a phloem-specific chromatin profile.
Project description:We report the application of laser capture microdissection (LCM) for high resolution transcriptome profiling of the second internode of the Arabidopsis thaliana inflorescence stem. In this series, we used LCM to determine and compare the transcriptome profiles of the phloem cap, the pith, and the remaining vascular bundle area.
Project description:Phloem-feeding pests cause extensive crop damage throughout the world yet little is understood about how plants perceive and defend themselves from these threats. The silverleaf whitefly (SLWF; Bemisia tabaci type B) is a good model for studying phloem-feeding insect-plant interactions as SLWF nymphs cause little wounding and have a long, continuous interaction with the plant. Using the Arabidopsis ATH1 GeneChip, the global responses to Silverleaf Whitefly 2nd instar feeding were examined. Keywords: stress response
Project description:This sudy focuses on the identification of transcripts in the shoot phloem of the model plant Arabidopsis thaliana. Transcripts expressed in the phloem tissue (parenchyma cell, companion cell, sieve element) were excised by laser microdissection pressure catapulting (LMPC). These were compared with transcripts isolated from leaf phloem exudates by EDTA-chelation technique. Optimization of sample harvest resulted in RNA of high quality from both sources. Modifications of the RNA amplification procedure obtained RNA of sufficient yield and quality for microarray experiments. Microarrays (Affymetrix, ATH1) hybridized with RNA derived from phloem tissue by LMPC or phloem sap allowed us to differentiate between phloem located and mobile transcript species. The datasets provide a search criterion for phloem-based signals and will facilitate reverse genetic studies and forward genetic screens for phloem and long distance RNA signaling mutants. Keywords: profiles of mobile and stationary Arabidopsis phloem transcripts
Project description:In this study we used vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem-associated translatome responses to infection by tobacco mosaic virus (TMV) in the systemic host Arabidopsis thaliana ecotype Shahdara. Three different promoter:FLAG-RPL18 lines were used. These included two phloem specific promoters (pSUC2 and pSULTR2;2) as well as the more ubiquitously expressed cauliflower mosaic virus 35S promoter (p35S). Immunopurification of ribosome-mRNA complexes was accomplished by the method described in Reynoso et al. (Plant Functional Genomics: Methods and Protocols, 185-207; 2015). The dataset includes samples from the leaves of 5-week-old plants inoculated with TMV (1 mg/mL) or mock inoculated with sterile water.