Project description:Root exudates contain specialised metabolites that affect the plant’s root microbiome. How host-specific microbes cope with these bioactive compounds, and how this ability shapes root microbiomes, remains largely unknown. We investigated how maize root bacteria metabolise benzoxazinoids, the main specialised metabolites of maize. Diverse and abundant bacteria metabolised the major compound in the maize rhizosphere MBOA and formed AMPO. AMPO forming bacteria are enriched in the rhizosphere of benzoxazinoid-producing maize and can use MBOA as carbon source. We identified a novel gene cluster associated with AMPO formation in microbacteria. The first gene in this cluster, bxdA encodes a lactonase that converts MBOA to AMPO in vitro. A deletion mutant of the homologous bxdA genes in the genus Sphingobium, does not form AMPO nor is it able to use MBOA as a carbon source. BxdA was identified in different genera of maize root bacteria. Here we show that plant-specialised metabolites select for metabolisation-competent root bacteria. BxdA represents a novel benzoxazinoid metabolisation gene whose carriers successfully colonize the maize rhizosphere and thereby shape the plant’s chemical environmental footprint
Project description:The association between soil microbes and plant roots is present in all natural and agricultural environments. Microbes can be beneficial, pathogenic, or neutral to the host plant development and adaptation to abiotic or biotic stresses. Progress in investigating the functions and changes in microbial communities in diverse environments have been rapidly developing in recent years, but the changes in root function is still largely understudied. The aim of this study was to determine how soil bacteria influence maize root transcription and microRNAs (miRNAs) populations in a controlled inoculation of known microbes over a defined time course. At each time point after inoculation of the maize inbred line B73 with ten bacterial isolates, DNA and RNA were isolated from roots. The V4 region of the 16S rRNA gene was amplified from the DNA and sequenced with the Illumina MiSeq platform. Amplicon sequencing of the 16S rRNA gene indicated that most of the microbes successfully colonized maize roots. The colonization was dynamic over time and varied with the specific bacterial isolate. Small RNA sequencing and mRNA-Seq was done to capture changes in the root transcriptome from 0.5 to 480 hours after inoculation. The transcriptome and small RNA analyses revealed epigenetic and transcriptional changes in roots due to the microbial inoculation. This research provides the foundational data needed to understand how plant roots interact with bacterial partners and will be used to develop predictive models for root response to bacteria.
Project description:Maize is a globally important food and feed crop, and a low-phosphate (Pi) supply in the soil frequently limits maize yield in many areas. MicroRNAs (miRNAs) play important roles in the development and adaptation of plants to the environment. In this study, the spatio-temporal miRNA transcript profiling of the maize inbred line Q319 root and leaf in response to low Pi was analyzed with high-throughput sequencing technologies, and the expression patterns of certain target genes were detected by real-time RT-PCR. Complex small RNA populations were detected after low-Pi culture and displayed different patterns in the root and leaf. miRNAs identified as responding to Pi deficiency can be grouped into ‘early’ miRNAs that respond rapidly, and often non-specifically, to Pi deficiency, and ‘late’ miRNAs that alter the morphology, physiology or metabolism of plants upon prolonged Pi deficiency. The miR827-Nitrogen limitation adaptation (NLA)-mediated post-transcriptional pathway was conserved in response to Pi availability of maize, but the miR399-mediated post-transcriptional pathway was different from Arabidopsis. Abiotic stress-related miRNAs engaged in interactions of different signaling and/or metabolic pathways. Auxin-related miRNAs (zma-miR393, zma-miR160a/b/c, zma-miR160d/e/g, zma-miR167a/b/c/d and zma-miR164a/b/c/d/g) and their targets play important roles in promoting primary root growth, inhibiting lateral root development and retarding upland growth of maize when subjected to low Pi. The changes in expression of miRNAs and their target genes suggest that the miRNA regulation/alterations compose an important mechanism in the adaptation of maize to a low-Pi environment; certain miRNAs participate in root architecture modification via the regulation of auxin signaling. A complex regulatory mechanism of miRNAs in response to a low-Pi environment exists in maize, revealing obvious differences from that in Arabidopsis.
Project description:During the over 300 million years of co-evolution between herbivorous insects and their host plants, a dynamic equilibrium of evolutionary arms race has been established. However, the co-adaptation between insects and their host plants is a complex process, often driven by multiple evolutionary mechanisms. We found that various lepidopteran pests that use maize as a host exhibit differential adaptation to the plant secondary metabolites, benzoxazinoids (BXs). Notably, the Spodoptera genus, including Spodoptera frugiperda (fall armyworm) and Spodoptera litura (cotton leafworm), demonstrate greater tolerance to BXs compared to other insects. Through comparative transcriptomic analysis of the midgut, we identified four candidate genes potentially involved in BXs detoxification in S. frugiperda. Subsequently, we confirmed two UGT genes, Sfru33T10 and Sfru33F32, as key players in BXs detoxification using CRISPR/Cas9 gene-editing technology. Phylogenetic analysis revealed that Sfru33T10 evolved independently within the Noctuidae family and is involved in the glycosylation of HDMBOA, while Sfru33F32 evolved independently within the Spodoptera genus and functions as a key detoxification enzyme responsible for the glycosylation of both DIMBOA and HMBOA. Our study demonstrates that the UGT gene family plays a crucial role in the adaptation of noctuid insects to maize, with multiple independent evolutionary events within the Noctuidae family and the Spodoptera genus contributing significantly to host adaptation.
Project description:Several reports have described the involvement of miRNAs in abiotic stresses. However, their role in biotic stress or to beneficial microbes has not been fully explored. In order to understand on the epigenetic regulation in plant in response to nitrogen-fixing bacteria association, we analyzed the sRNA regulation in maize hybrids (Zea mays M-bM-^@M-^S UENF 506-8) inoculated with the beneficial diazotrophic bacteria (Herbaspirillum seropedicae). Deep sequencing analysis was carried out to identify the sRNAs regulated in maize during association with diazotrophic bacteria. For this analysis, maize plants were germinated in wet paper and put in hydroponic system with HoaglandM-bM-^@M-^Ys solution and then inoculated with H. seropedicae for seven days. Mock and inoculated plants were collected and total RNA from a pool of samples was extracted with Trizol reagent. The two sRNA libraries were sequenced by Illumina. The sequences were filtered to remove adaptors and contaminants rRNA and tRNAs, and sequences with 18-28 nt in length were selected. To identify the miRNAs present in these libraries, we used two strategies using the same website (http://srna-tools.cmp.uea.ac.uk): one to identify novel miRNAs using the maize genome (verson 2) and miRCat pipeline; and other to identify conserved miRNAs using the miRBase database (release 13.0, http://microrna.sanger.ac.uk) and miRProf pipeline. We identified 17 novel putative miRNAs candidates and mapped the precursor of these miRNAs in the maize genome. Furthermore, we identified 25 conserved miRNAs families and the differential expressions were analyzed with miRProf pipeline. The bioinformatics analysis of four up-regulated miRNAs (miR397, miR398, miR408 and miR528) in inoculated plant was validated using stemM-bM-^@M-^Sloop RT-PCR assay. Our findings contribute to increase the knowledge of the molecular relation between plants and endophytic bacteria. Screenning of sRNA transcriptome of maize plants inoculated with Herbaspirillum seropedicae after seven days