Project description:Divergent functions of two clades of flavodoxin in diatoms mitigate oxidative stress and iron limitation Thalassiosira pseudonana and 4 open-ocean diatoms were subjected to iron limitation or short-term oxidative stress (hydrogen peroxide). mRNA profiles of T. pseudonana (CCMP1335), Thalassiosira oceanica (CCMP1005), Amphora coffeaeformis (CCMP1405), Chaetoceros sp. (CCMP199), and Cylindrotheca closterium (CCMP340).
Project description:According to the present theories, in nutrient-repleted conditions diatoms should not be affected by turbulence. We made laboratory experiments to demonstrate that two chain forming diatoms sense and respond to turbulence by varying their chain length spectra and tuning their metabolism. We compared transcriptomes of turbulence-exposed cells with still conditions and analyzed the effects.
Project description:Phosphorus is a critical nutrient controlling phytoplankton growth. Availability of this limiting factor can vary significantly in space and time, particularly in dynamic aquatic ecosystems. Diatoms are important eukaryotic phytoplankton that thrive in regions of pulsed phosphate supply, yet little is known of the sensory mechanisms enabling them to detect and rapidly respond to phosphorus availability. Here we show that phosphorus-starved diatoms utilise a novel Ca2+-dependent signalling pathway to sense and regulate cellular recovery following phosphorus resupply. This pathway, which has not previously been described in eukaryotes, is sensitive to sub-micromolar concentrations of phosphate, alongside a range of environmentally relevant phosphorus forms. Using comparative proteomics, we have characterised early adaptations governing diatom cellular recovery from phosphorus limitation. Strikingly, the dominant response was substantial enhancement of nitrogen assimilation proteins. This led to 12-fold increases in absolute nitrate uptake rates, relative to phosphorus-starved cells. Moreover, we find that the novel phosphorus-Ca2+ signalling pathway controls this primary recovery response. Our findings highlight that fundamental cross-talk between the essential nutrients phosphorus and nitrogen drive diatom recovery from phosphorus limitation. Moreover, a novel Ca2+-dependent phosphorus signalling pathway governs such ecological acclimation responses, and is thus likely critical to the success of diatoms in regions of episodic nutrient supply.
Project description:Photosynthetic, respirational and growth response of six benthic diatoms from the Antarctic Peninsula as function of salinity and temperature variations
Project description:Proteins associated with diatom silica are likely involved in the biogenesis of the complex, species-specific morphologies of the biomineral, but only very few such proteins have been identified. In this project we extracted and identified proteins from three related, but morphologically distinct, species of centric diatoms: Thalassiosira pseudonana, Thalassiosira oceanica and Cyclotella cryptica.
Project description:Intense bottom-ice algal blooms, often dominated by diatoms, are an important source of food for grazers, organic matter for export during sea ice melt, and dissolved organic carbon. Sea-ice diatoms have a number of adaptations, including accumulation of compatible solutes, that allow them to inhabit this highly variable environment characterized by extremes in temperature, salinity, and light. In addition to protecting them from extreme conditions, these compounds present a labile, nutrient-rich source of organic matter and include precursors to climate active compounds (e.g. DMS), which are likely regulated with environmental change. Here, intracellular concentrations of 45 metabolites were quantified in three sea-ice diatom species and were compared to two temperate diatom species, with a focus on compatible solutes and free amino acid pools. There was a large diversity of metabolite concentrations between diatoms with no clear pattern identifiable for sea-ice species. Concentrations of some compatible solutes (isethionic acid, homarine) approached 1 M in the sea-ice diatoms, Fragilariopsis cylindrus and Navicula cf. perminuta, but not in the larger sea-ice diatom, Nitzschia lecointei or in the temperate diatom species. The differential use of compatible solutes in sea-ice diatoms suggest different adaptive strategies and highlights which small organic compounds may be important in polar biogeochemical cycles.