Project description:Soybean and fish contains various active components that were reported to prevent cardiovasucular diseases. Epidemiological studies indicated that Asian eating patterns, consisting of daily seafood and/or soy consumption, confer protection against cardiovascular diseases. In this context, we expected that simultaneous intake of soybean and fish may be greatly beneficial in a manner different from the ingestion of the individual food. To understand the detailed mechanism for modulating the lipid metabolism by co-ingestion of a soy food (tofu) and fish oil, we investigated the global changes in hepatic mRNA expression in rats by using a microarray analysis. Generally, ingestion of tofu contributed to prevent the mRNA expressions involved in hepatic lipogenesis, whereas fish oil facilitated the mRNA expressions related to the degradation of hepatic fatty acids. In terms of mRNA expression, the interaction of two dietary factors was limited. The expression data was normalized and summarized by using SuperNORM data service (Skylight Biotech Inc.). Significance of expressional change among groups was tested by 2-way ANOVA on the normalized CEL data, which was deposited in a tab-separated ASCII text format. Principal components were identified on the summarized gene data. Rats were divided into four groups each with similar average body weights and assigned experimental diets for 21 days as follows: casein and soybean oil diet (CS); casein and fish oil diet (CF); tofu and soybean oil diet (TS); tofu and fish oil diet (TF). Total protein and fat content of each diet was 200 and 150 g/kg, respectively. Soybean oil diets (CS and TS) contain 150 g/kg diet of soybean-derived fat (i.e. soybean oil and freeze-dried tofu), and 50 g/kg of fish oil was replaced with the same amount of soybean-derived fat for fish oil diets (CF and TF). Animals were allowed free access to food and water.
Project description:The effects of freeze-dried tofu, a traditional Japanese soy food, were compared with those of major active soy components, protein and isoflavone, by observing physiological differences and global transcriptomes in the liver of male rats. The GeneChip data was normalized and summarized by using SuperNORM data service (Skylight Biotech Inc.). Significance of expressional change among groups was tested by 2-way ANOVA on the normalized CEL data, which was deposited in a tab-separated ASCII text format. Principal components were identified on the summarized gene data. Rats were randomly divided into 6 groups of 5 samples and assigned experimental diets for 14 days. The experimental diets were as follows: casein diet (C); C containing isoflavone (CI) soy protein diet (S); S containing isoflavone (SI); a diet containing 100 g/kg each of protein derived from casein and freeze-dried tofu (T10); a diet containing 200 g/kg of protein derived from freeze-dried tofu (T20). CI and SI were supplemented with a mixture of isoflavones to match the isoflavone level of T20.
Project description:Here we used functional proteomics approaches to identify an upstream transcription complex (USTC) that is required for piRNA biogenesis. The complex contains PRDE-1, SNPC-4, TOFU-4, and TOFU-5, all of which are enriched on the two piRNA clusters on chromosome IV and form distinct piRNA foci in the nucleus.
Project description:Soybean and fish contains various active components that were reported to prevent cardiovasucular diseases. Epidemiological studies indicated that Asian eating patterns, consisting of daily seafood and/or soy consumption, confer protection against cardiovascular diseases. In this context, we expected that simultaneous intake of soybean and fish may be greatly beneficial in a manner different from the ingestion of the individual food. To understand the detailed mechanism for modulating the lipid metabolism by co-ingestion of a soy food (tofu) and fish oil, we investigated the global changes in hepatic mRNA expression in rats by using a microarray analysis. Generally, ingestion of tofu contributed to prevent the mRNA expressions involved in hepatic lipogenesis, whereas fish oil facilitated the mRNA expressions related to the degradation of hepatic fatty acids. In terms of mRNA expression, the interaction of two dietary factors was limited. The expression data was normalized and summarized by using SuperNORM data service (Skylight Biotech Inc.). Significance of expressional change among groups was tested by 2-way ANOVA on the normalized CEL data, which was deposited in a tab-separated ASCII text format. Principal components were identified on the summarized gene data.
2015-09-01 | GSE66371 | GEO
Project description:Salmonella isolated from traditonal food Chinese salad
Project description:The effects of freeze-dried tofu, a traditional Japanese soy food, were compared with those of major active soy components, protein and isoflavone, by observing physiological differences and global transcriptomes in the liver of male rats. The GeneChip data was normalized and summarized by using SuperNORM data service (Skylight Biotech Inc.). Significance of expressional change among groups was tested by 2-way ANOVA on the normalized CEL data, which was deposited in a tab-separated ASCII text format. Principal components were identified on the summarized gene data.
Project description:The mechanisms of action of common food preservatives are poorly understood. As there is a drive to develop alternative preservatives, understanding the mechanisms of action of current preservatives can inform development of novel food preservatives to ensure their efficacy. Here we used TraDIS-Xpress, a large-scale, genome-wide unbiased screen to determine the mechanisms of action of common food preservatives by determining the genes that affect preservative susceptibility in Salmonella enterica serovar Typhimurium.
Project description:Antimicrobials have been shown to select for changes in biofilm formation and multidrug susceptibility in common human pathogens. We investigated whether common food preservatives selected for these changes in the food pathogen Salmonella enterica serovar Typhimurium. Bacteria were exposed to four food preservatives in either planktonic cultures or biofilms grown on stainless steel beads. Cultures were passaged into fresh media supplemented with the food preservative every 72 hours. Following approximately 1000 generations of continuous preservative exposure, populations were sequenced to determine the single nucleotide polymorphisms that were selected for over evolutionary time.
Project description:Salmonella is one of most common causes of bacterial foodborne disease and consumption of contaminated poultry products, including turkey, is one route of exposure. Minimizing colonization of commercial turkeys with Salmonella could reduce the incidence of Salmonella-associated human foodborne illness. Understanding host responses to these bacteria could lead to potential strategies to minimize colonization and thus food safety risk. In this study, we evaluated bacterial load and blood leukocyte transcriptomic responses of 3-week-old turkeys challenged with the Salmonella enterica serovar Typhimurium (S. Typhimurium) UK1 strain. Turkeys (n = 8/dose) were inoculated with 108 or 1010 colony forming units (CFU) of S. Typhimurium UK1 and fecal shedding and tissue colonization were measured across multiple days post inoculation (dpi). Fecal shedding was 1-2 log10 higher in the 1010 CFU group than the 108 CFU group, but both doses effectively colonized the crop, spleen, ileum, cecum, colon, bursa of Fabricius and cloaca without causing any overt clinical signs in either group of birds. Blood leukocytes were isolated from a subset of the birds (n =3-4/dpi) both pre-infection (0 dpi) and 2 dpi with 1010 CFU and their transcriptomic responses assayed by RNA-sequencing (RNA-seq). After 2 dpi, 647 genes had significant differential expression (DE), including large increases in expression of immune genes such as CCAH221, IL4I1, LYZ, IL13RA2, IL22RA2, and ACOD1. IL1B was predicted as a major regulator of DE in these leukocytes and this DE was predicted to activate cell migration, phagocytosis and proliferation, and to impact the STAT3 and toll-like receptor pathways. These data revealed genes and pathways by which turkey blood leukocytes responded to the pathogen and can provide potential targets for developing intervention strategies or diagnostic assays to mitigate S. Typhimurium in turkeys.