Project description:In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic (Mk) fates from single CD34+ cells and then mapped the progenitor hierarchy across human development. Fetal liver contained large numbers of distinct oligopotent progenitors with intermingled My, Er and Mk fates. However, few oligopotent progenitor intermediates were present in the adult bone marrow. Instead only two progenitor classes predominate, multipotent and unipotent, with Er-Mk lineages emerging from multipotent cells. The developmental shift to an adult 'two-tier' hierarchy challenges current dogma and provides a revised framework to understand normal and disease states of human hematopoiesis.
Project description:Hamey2017 - Blood stem cell regulatory
network
This model is described in the article:
Reconstructing blood stem
cell regulatory network models from single-cell molecular
profiles
Fiona K. Hamey, Sonia Nestorowa,
Sarah J. Kinston, David G. Kent, Nicola K. Wilson, and Berthold
Göttgens
Proceedings of the National Academy of
Sciences of the United States of America
Abstract:
Adult blood contains a mixture of mature cell types, each
with specialized functions. Single hematopoietic stem cells
(HSCs) have been functionally shown to generate all mature cell
types for the lifetime of the organism. Differentiation of HSCs
toward alternative lineages must be balanced at the population
level by the fate decisions made by individual cells.
Transcription factors play a key role in regulating these
decisions and operate within organized regulatory programs that
can be modeled as transcriptional regulatory networks. As
dysregulation of single HSC fate decisions is linked to fatal
malignancies such as leukemia, it is important to understand
how these decisions are controlled on a cell-by-cell basis.
Here we developed and applied a network inference method,
exploiting the ability to infer dynamic information from
single-cell snapshot expression data based on expression
profiles of 48 genes in 2,167 blood stem and progenitor cells.
This approach allowed us to infer transcriptional regulatory
network models that recapitulated differentiation of HSCs into
progenitor cell types, focusing on trajectories toward
megakaryocyte–erythrocyte progenitors and lymphoid-primed
multipotent progenitors. By comparing these two models, we
identified and subsequently experimentally validated a
difference in the regulation of nuclear factor, erythroid 2
(Nfe2) and core-binding factor, runt domain, alpha subunit 2,
translocated to, 3 homolog (Cbfa2t3h) by the transcription
factor Gata2. Our approach confirms known aspects of
hematopoiesis, provides hypotheses about regulation of HSC
differentiation, and is widely applicable to other hierarchical
biological systems to uncover regulatory relationships.
This model is hosted on
BioModels Database
and identified by:
MODEL1610060000.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Hamey2017 - Blood stem cell regulatory
network (LMPP network)
This model is described in the article:
Reconstructing blood stem
cell regulatory network models from single-cell molecular
profiles
Fiona K. Hamey, Sonia Nestorowa,
Sarah J. Kinston, David G. Kent, Nicola K. Wilson, and Berthold
Göttgens
Proceedings of the National Academy of
Sciences of the United States of America
Abstract:
Adult blood contains a mixture of mature cell types, each
with specialized functions. Single hematopoietic stem cells
(HSCs) have been functionally shown to generate all mature cell
types for the lifetime of the organism. Differentiation of HSCs
toward alternative lineages must be balanced at the population
level by the fate decisions made by individual cells.
Transcription factors play a key role in regulating these
decisions and operate within organized regulatory programs that
can be modeled as transcriptional regulatory networks. As
dysregulation of single HSC fate decisions is linked to fatal
malignancies such as leukemia, it is important to understand
how these decisions are controlled on a cell-by-cell basis.
Here we developed and applied a network inference method,
exploiting the ability to infer dynamic information from
single-cell snapshot expression data based on expression
profiles of 48 genes in 2,167 blood stem and progenitor cells.
This approach allowed us to infer transcriptional regulatory
network models that recapitulated differentiation of HSCs into
progenitor cell types, focusing on trajectories toward
megakaryocyte–erythrocyte progenitors and lymphoid-primed
multipotent progenitors. By comparing these two models, we
identified and subsequently experimentally validated a
difference in the regulation of nuclear factor, erythroid 2
(Nfe2) and core-binding factor, runt domain, alpha subunit 2,
translocated to, 3 homolog (Cbfa2t3h) by the transcription
factor Gata2. Our approach confirms known aspects of
hematopoiesis, provides hypotheses about regulation of HSC
differentiation, and is widely applicable to other hierarchical
biological systems to uncover regulatory relationships.
This model is hosted on
BioModels Database
and identified by:
MODEL1610060001.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Hematopoietic stem cells (HSC) and downstream lineage-biased multipotent progenitors (MPP) tailor blood production and control myelopoiesis on demand. However, a precise resolution of myeloid differentiation trajectories and cellular heterogeneity in various MPP populations and understanding of their role in controlling myeloid cell production remains largely lacking. Here, we analyze that myeloid-biased MPP3 are functionally and molecularly heterogenous, with a distinct subset of myeloid-primed secretory cells with high endoplasmic reticulum (ER) volume.
Project description:Hematopoietic multipotent progenitors (MPPs) regulate blood cell production to appropriately meet the biological demands of the human body. Human MPPs remain ill-defined whereas mouse MPPs have been well characterized with distinct immunophenotypes and lineage potencies. Using multiomic single cell analyses and complementary functional assays, we identified new human MPPs and oligopotent progenitor populations within Lin-CD34+CD38dim/lo adult bone marrow with distinct biomolecular and functional properties. These populations were prospectively isolated based on expression of CD69, CLL1, and CD2 in addition to classical markers like CD90 and CD45RA. We show that within the canonical Lin-CD34+CD38dim/loCD90-CD45RA- MPP population, there is a CD69+ MPP with long-term engraftment and multilineage differentiation potential, a CLL1+ myeloid-biased MPP, and a CLL1-CD69- erythroid-biased MPP. We also show that the canonical Lin-CD34+CD38dim/loCD90-CD45RA+ LMPP population can be separated into a CD2+ LMPP with lymphoid and myeloid potential, a CD2- LMPP with high lymphoid potential, and a CLL1+ GMP with minimal lymphoid potential. We used these new HSPC profiles to study human and mouse bone marrow cells and observe limited cell type specific homology between humans and mice and cell type specific changes associated with aging. By identifying and functionally characterizing new adult MPP sub-populations, we provide an updated reference and framework for future studies in human hematopoiesis.
Project description:During embryogenesis, waves of hematopoietic progenitors develop from hemogenic endothelium (HE) prior to the emergence of self-renewing hematopoietic stem cells (HSC). Although previous studies have shown that yolk sac-derived erythromyeloid progenitors and HSC emerge from distinct populations of HE, it remains unknown whether the earliest lymphoid-competent progenitors, multipotent progenitors, and HSC originate from common HE. Here we demonstrate by clonal assays and single cell transcriptomics that rare HE with functional HSC potential in the early murine embryo are distinct from more abundant HE with multilineage hematopoietic potential that fail to generate HSC. Specifically, HSC-competent HE are characterized by expression of CXCR4 surface marker and by higher expression of genes tied to arterial programs regulating HSC dormancy and self-renewal. Together, these findings suggest a revised model of developmental hematopoiesis in which the initial populations of multipotent progenitors and HSC arise independently from HE with distinct phenotypic and transcriptional properties.
Project description:The mammary gland (MG) is composed of basal cells (BCs) and luminal cells (LCs). While it is generally believed that MG arises from embryonic multipotent progenitors (EMPs), it remains unclear when lineage restriction occurs and what are the mechanisms responsible for the switch from multipotency to unipotency during MG morphogenesis. Here, we performed multicolor lineage tracing and assessed the fate of single progenitors and demonstrated the existence of a developmental switch from multipotency to unipotency during embryonic MG development. Molecular profiling and single cell RNA-seq revealed that EMPs express a unique hybrid basal and luminal signature and the factors associated with the different lineages. Sustained p63 expression in EMPs promotes unipotent BC fate and was sufficient to reprogram adult LCs into BCs by promoting an intermediate hybrid multipotent like state. Altogether, this study identifies the timing and the mechanisms mediating the early lineage segregation of multipotent progenitors during MG development.
Project description:Hematopoietic stem cells (HSC) possess life-long self-renewal activity and generate a series of multipotent progenitors that differentiate into lineage-committed progenitors and subsequently mature cells. Recently, functionally distinct stem and progenitor cell types have been identified, however, a systems-wide understanding of the underlying gene regulation is lacking. Here, we present the global transcriptome of ex vivo isolated mouse multipotent hematopoietic stem/progenitor cells (HSPCs, LinnegSca-1+c-Kit+) and myeloid committed precursors (LinnegSca-1-c-Kit+) as revealed by next-generation sequencing (RNA-seq).