Project description:In order to characterize the changes in global gene expression in the distal colon of constipated SD rats in response to the laxative effects induced by aqueous extract of Liriope platyphylla (AEtLP) including isoflavone, saponin, oligosaccharide, succinic acid and hydroxyproline, total RNA extracted from the distal colon of AEtLP-treated constipation rats was hybridized to oligonucleotide microarrays.Overall, 581 genes were up-regulated and 216 genes were down-regulated by constipation induced by loperamide, while 67 genes were up-regulated and 421 genes were down-regulated by AEtLP treatment in constipated rats compared to controls. Among the transcripts up-regulated by constipation, 89 were significantly down-regulated and 20 were recovered to normal levels by AEtLP treatment. The major genes in the down-regulated categories included Slc9a5, klk10, Fgf15 and Alpi, while the major genes in the recovered categories were Cyp2b2, Ace, G6pc and Setbp1. However, nine of these genes that were down-regulated by constipation were significantly up-regulated and four were recovered to normal levels by AEtLP treatment. The major genes in the up-regulated categories included Serpina3n, Lcn2 and Slc5a81, while the major genes in the recovered categories were Tmem45a, Rerg and Rgc32. Constipation was induced in SD rats by subcutaneous injection of loperamide for 3 days. At 15 hr after the final treatment of loperamide, each animal were received a consistent volume of water or 15 uL/g body weight of AEtLP (1,000 mg/kg weight) via oral administration for once at 9 AM.
Project description:In order to characterize the changes in global gene expression in the distal colon of constipated SD rats in response to the laxative effects induced by aqueous extract of Liriope platyphylla (AEtLP) including isoflavone, saponin, oligosaccharide, succinic acid and hydroxyproline, total RNA extracted from the distal colon of AEtLP-treated constipation rats was hybridized to oligonucleotide microarrays.Overall, 581 genes were up-regulated and 216 genes were down-regulated by constipation induced by loperamide, while 67 genes were up-regulated and 421 genes were down-regulated by AEtLP treatment in constipated rats compared to controls. Among the transcripts up-regulated by constipation, 89 were significantly down-regulated and 20 were recovered to normal levels by AEtLP treatment. The major genes in the down-regulated categories included Slc9a5, klk10, Fgf15 and Alpi, while the major genes in the recovered categories were Cyp2b2, Ace, G6pc and Setbp1. However, nine of these genes that were down-regulated by constipation were significantly up-regulated and four were recovered to normal levels by AEtLP treatment. The major genes in the up-regulated categories included Serpina3n, Lcn2 and Slc5a81, while the major genes in the recovered categories were Tmem45a, Rerg and Rgc32.
Project description:An investigation of gene expression changes in rectal biopsies from donors with IBS compared to controls to begin to understand this complex syndrome. To further investigate differences between IBS groups (constipation and diarrhoea predominant) (part1) and how IBS relates to bacterial infection (part2) with biopsies taken 6 months after Campylobacter jejuni infection. Part1: 18 Constipation predominant IBS subjects (IBS-C) and 27 diarrhoea predominant IBS subjects (IBS-D) compared to 21 healthy volunteers (HV). Part2: 21 Campylobacter jejuni infection (PIBD, PIBS, PINIBS) compared to 19 healthy volunteers (HV). PIBD = post Campylobacter infection with IBS (within 6 months) PIBS = post infection IBS (unknown time point and organism) PINIBS = post Campylobacter infection with no resulting IBS
Project description:To pinpoint a distinctive gene associated with constipation resulting from C3 deficiency, we conducted microarray hybridization using total RNA extracted from the mid colon of C3 knockout (C3 KO) mice. Identification of causal genes through comparison of gene expression levels in mice induced with C3 deficiency.
Project description:Chronic diseases arise when pathophysiological processes achieve a steady state by self-reinforcing. Here, we explored the possibility of a self-reinforcement state in a common condition, chronic constipation, where alterations of the gut microbiota have been reported. The functional impact of the microbiota shifts on host physiology remains unclear, however we hypothesized that microbial communities adapted to slow gastrointestinal transit affect host functions in a way that reinforces altered transit, thereby maintaining the advantage for microbial self-selection. To test this, we examined the impact of pharmacologically (loperamide)-induced constipation (PIC) on the structural and functional profile of altered gut microbiota. PIC promoted changes in the gut microbiome, characterized by decreased representation of butyrate-producing Clostridiales, decreased cecal butyrate concentration and altered metabolic profiles of gut microbiota. PIC-associated gut microbiota also impacted colonic gene expression, suggesting this might be a basis for decreased gastrointestinal (GI) motor function. Introduction of PIC-associated cecal microbiota into germ-free (GF) mice significantly decreased GI transit time. Our findings therefore support the concept that chronic diseases like constipation are caused by disease-associated steady states, in this case, caused by reciprocating reinforcement of pathophysiological factors in host-microbe interactions. We used microarrays to detail the global gene expression profile in the proximal colon smooth muscle tissues of germ-free, conventionalized, or specific pathogen free mouse
Project description:An investigation of gene expression changes in rectal biopsies from donors with IBS compared to controls to begin to understand this complex syndrome. To further investigate differences between IBS groups (constipation and diarrhoea predominant) (part1) and how IBS relates to bacterial infection (part2) with biopsies taken 6 months after Campylobacter jejuni infection.
Project description:Chronic diseases arise when pathophysiological processes achieve a steady state by self-reinforcing. Here, we explored the possibility of a self-reinforcement state in a common condition, chronic constipation, where alterations of the gut microbiota have been reported. The functional impact of the microbiota shifts on host physiology remains unclear, however we hypothesized that microbial communities adapted to slow gastrointestinal transit affect host functions in a way that reinforces altered transit, thereby maintaining the advantage for microbial self-selection. To test this, we examined the impact of pharmacologically (loperamide)-induced constipation (PIC) on the structural and functional profile of altered gut microbiota. PIC promoted changes in the gut microbiome, characterized by decreased representation of butyrate-producing Clostridiales, decreased cecal butyrate concentration and altered metabolic profiles of gut microbiota. PIC-associated gut microbiota also impacted colonic gene expression, suggesting this might be a basis for decreased gastrointestinal (GI) motor function. Introduction of PIC-associated cecal microbiota into germ-free (GF) mice significantly decreased GI transit time. Our findings therefore support the concept that chronic diseases like constipation are caused by disease-associated steady states, in this case, caused by reciprocating reinforcement of pathophysiological factors in host-microbe interactions. We used microarrays to detail the global gene expression profile in the proximal colon smooth muscle tissues of germ-free, conventionalized, or specific pathogen free mouse C57Bl/6 female and male specific pathogen free (SPF) mice were bred and housed in the animal care facility at the University of Chicago. Mice of 8–10 weeks of age were treated with 0.1% loperamide in the drinking water for 7 days. Age matched, germ-free (GF) C57Bl/6 mice were gavaged orally with cecal luminal contents harvested from control or loperamide-treated C57Bl/6 donor mice. Recipient mice were sacrificed 4 weeks post-colonization.