Project description:Yamoa⢠is marketed and sold as a dietary supplement with anecdotal positive effects in asthma and hay fever. We determined that Yamoa⢠(ground bark of Funtumia elastica tree) stimulated innate immunity in part by affecting gamma delta T cells. Yamoa⢠had distinct priming effects, very similar to, but more robust than, that of lipopolysaccharide (LPS), on bovine, mouse and human gamma delta T cells. However, the optimal effect was dependent on the presence of accessory cells. Gene expression patterns in bovine gamma delta T cells and monocytes induced by Yamoa⢠were very similar to those induced by ultrapure LPS, but the agonists in Yamoa⢠did not signal entirely through TLR4. Yamoa⢠stimulated human cells to produce cytokines involved innate protection. The bioactive component of Yamoa⢠was delineated to a complex polysaccharide fraction (Yam-I). Intraperitoneal injection of Yamoa⢠and very low doses of Yam-I in mice induced rapid increases peritoneal neutrophils directed by changes chemokine expression. Yamoa⢠and Yam-I were effective as therapeutic treatments in mice with Salmonella enterica serotype Typhimurium (ST) induced enterocolitis that resulted in decreased bacterial counts in feces. This initial characterization of the immune stimulatory properties of polysaccharides derived from Yamoa⢠suggests potential mechanisms for positive effects in asthma and that they have potential for application in infectious disease settings. . Experiment Overall Design: To begin to understand the effects of Yamoa in innate immunity, we investigated the global gene expression profiles of stimulated bovine gamma delta T cells. Peripheral blood from 3 neonatal bovine calves was collected. gamma delta T cells were sorted to >97% purity using a FACS Vantage. Cells were placed in culture and stimulated with either an aqueous extract of Yamoa (32.6ug/ml), ultrapure LPS [uLPS (10ug/ml)] or PBS for 4 hours after which RNA was extracted and processed for microarray analysis.
Project description:The liver of dairy cows naturally displays a series of metabolic adaptation during the periparturient period in response to the increasing nutrient requirement of lactation. The hepatic adaptation is partly regulated by insulin resistance and it is affected by the prepartal energy intake level of cows. We aimed to investigate the metabolic changes in the liver of dairy cows during the periparturient at gene expression level and to study the effect of prepartal energy level on the metabolic adaptation at gene expression level.B13:N13
Project description:The Toll-like receptor (TLR) and peptidoglycan recognition protein 1 (PGLYRP1) genes play key roles in the innate immune systems of mammals. While the TLRs recognize a variety of invading pathogens and induce innate immune responses, PGLYRP1 is directly microbicidal. We used custom allele-specific assays to genotype and validate 220 diallelic variants, including 54 nonsynonymous SNPs in 11 bovine innate immune genes (TLR1-TLR10, PGLYRP1) for 37 cattle breeds. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and we were unable to differentiate between the specialized B. t. taurus beef and dairy breeds, despite an average polymorphism density of one locus per 219 bp. Ninety-nine tagSNPs and one tag insertion-deletion polymorphism were sufficient to predict 100% of the variation at all 11 innate immune loci in both subspecies and their hybrids, whereas 58 tagSNPs captured 100% of the variation at 172 loci in B. t. taurus. PolyPhen and SIFT analyses of nonsynonymous SNPs encoding amino acid replacements indicated that the majority of these substitutions were benign, but up to 31% were expected to potentially impact protein function. Several diversity-based tests provided support for strong purifying selection acting on TLR10 in B. t. taurus cattle. These results will broadly impact efforts related to bovine translational genomics.