Project description:Crustose coralline algae (CCA) are calcifying red macroalgae that play important ecological roles including stabilisation of reef frameworks and provision of settlement cues for a range of marine invertebrates. Previous research into the responses of CCA to ocean warming (OW) and ocean acidification (OA) have found magnitude of effect to be species-specific. Response to OW and OA could be linked to divergent underlying molecular processes across species. Here we show Sporolithon durum, a species that exhibits low sensitivity to climate stressors, had little change in metabolic performance and did not significantly alter the expression of any genes when exposed to temperature and pH perturbations. In contrast, Porolithon onkodes, a major coral reef builder, reduced photosynthetic rates and had a labile transcriptomic response with over 400 significantly differentially expressed genes, with differential regulation of genes relating to physiological processes such as carbon acquisition and metabolism. The differential gene expression detected in P. onkodes implicates possible key metabolic pathways, including the pentose phosphate pathway, in the stress response of this species. We suggest S. durum is more resistant to OW and OA than P. onkodes, which demonstrated a high sensitivity to climate stressors and may have limited ability for acclimatisation. Understanding changes in gene expression in relation to physiological processes of CCA could help us understand and predict how different species will respond to, and persist in, future ocean conditions predicted for 2100.
Project description:Two known settlement/metamorphosis inducing stimuli (crustose coralline algae, and ethanolic extract of crustose coralline algae) and one stimulus which just induces metamorphosis (LWamide) were used to stimulate competent planula larvae of the coral Acropora millepora. Samples were taken 0.5h, 4h and 12h post induction isolate the genes controlling settlement and metamorphosis in this coral.
Project description:Inter- and intraspecific diversity in bacterial communities associated with two crustose coralline algae from the NW Mediterranean Sea
Project description:To assess how larvae of different ages vary in their responses to different settlement cues, we induced individual Amphimedon queenslandica larvae with one of three different settlement cues at 1.5, 3, 5, and 8 hours post emergence (hpe) from the adult sponge. The settlement cues were (1) the articulated coralline algae Amphiroa fragilissima, (2) the crustose coralline algae Mesophyllum sp., and (3) the filtered seawater (FSW) negative control. We used CEL-Seq2, an RNA-Sequencing approach (Hashimshony et al., 2016), to generate transcriptome data for a total of 144 individuals (larvae and settled post-larvae) at 2 hours post induction (hpi) to the different settlement cues.
Project description:Turbidity associated with elevated suspended sediment concentrations can significantly reduce underwater light availability. Understanding the consequences for sensitive organisms such as corals and crustose coralline algae (CCA), requires an understanding of tolerance levels and the time course of effects. Adult colonies of Acropora millepora and Pocillopora acuta, juvenile P. acuta, and the CCA Porolithon onkodes were exposed to six light treatments of ~0, 0.02, 0.1, 0.4, 1.1 and 4.3 mol photons m-2 d-1, and their physiological responses were monitored over 30 d. Exposure to very low light (<0.1 mol photons m-2 d-1) caused tissue discoloration (bleaching) in the corals, and discolouration (and partial mortality) of the CCA, yielding 30 d EI10 thresholds (irradiance which results in a 10% change in colour) of 1.2-1.9 mol photons m-2 d-1. Recent monitoring studies during dredging campaigns on a shallow tropical reef, have shown that underwater light levels very close (~500 m away) from a working dredge routinely fall below this value over 30 d periods, but rarely during the pre-dredging baseline phase. Light reduction alone, therefore, constitutes a clear risk to coral reefs from dredging, although at such close proximity other cause-effect pathways, such as sediment deposition and smothering, are likely to also co-occur.