Project description:Disruption of the MAPK pathway in cancer by kinase inhibition often fails due to pathway reactivation, causing clinical relapse. Among MAPK inhibitors, type I RAF inhibitors are only active against specific BRAF mutants; MEK inhibitor monotherapy is associated with limited clinical benefits but may serve as a foundation for combinatorial therapy. Here, we show that type II RAF plus allosteric MEK inhibitors durably blunt the development of acquired MEK inhibitor resistance among cancers with KRAS, NRAS, NF1, BRAFnon-V600 and BRAFV600 mutations, when compared to a combination of type II RAF plus ERK inhibitors. Type II RAF and MEK (versus ERK) inhibitors also display superior capacity to sequester MEK in RAF complexes and uncouple MEK and ERK interaction in acquired resistant tumor subpopulations. Systemically and intratumorally, type II RAF plus MEK inhibitors expand memory and activated/exhausted CD8+ T-cells. Whereas trametinib alone temporally reduces dominant intra-tumoral T-cell clones, type II RAF inhibitor co-treatment reverses this effect and promotes T-cell clonotypic expansion and convergence. Importantly, durably control of tumors by this combination requires CD8+ T-cells. Thus, the prolonged anti-tumor efficacy of type II RAF plus MEK inhibitors reveals exquisite MAPK addiction in common lethal cancer histologies, and the mechanisms include unexpected allosteric perturbation of the MAPK pathway and engagement of anti-tumor CD8+ T-cell immunity.
Project description:Disruption of the MAPK pathway in cancer by kinase inhibition often fails due to pathway reactivation, causing clinical relapse. Among MAPK inhibitors, type I RAF inhibitors are only active against specific BRAF mutants; MEK inhibitor monotherapy is associated with limited clinical benefits but may serve as a foundation for combinatorial therapy. Here, we show that type II RAF plus allosteric MEK inhibitors durably blunt the development of acquired MEK inhibitor resistance among cancers with KRAS, NRAS, NF1, BRAFnon-V600 and BRAFV600 mutations, when compared to a combination of type II RAF plus ERK inhibitors. Type II RAF and MEK (versus ERK) inhibitors also display superior capacity to sequester MEK in RAF complexes and uncouple MEK and ERK interaction in acquired resistant tumor subpopulations. Systemically and intratumorally, type II RAF plus MEK inhibitors expand memory and activated/exhausted CD8+ T-cells. Whereas trametinib alone temporally reduces dominant intra-tumoral T-cell clones, type II RAF inhibitor co-treatment reverses this effect and promotes T-cell clonotypic expansion and convergence. Importantly, durably control of tumors by this combination requires CD8+ T-cells. Thus, the prolonged anti-tumor efficacy of type II RAF plus MEK inhibitors reveals exquisite MAPK addiction in common lethal cancer histologies, and the mechanisms include unexpected allosteric perturbation of the MAPK pathway and engagement of anti-tumor CD8+ T-cell immunity.
Project description:Disruption of the MAPK pathway in cancer by kinase inhibition often fails due to pathway reactivation, causing clinical relapse. Among MAPK inhibitors, type I RAF inhibitors are only active against specific BRAF mutants; MEK inhibitor monotherapy is associated with limited clinical benefits but may serve as a foundation for combinatorial therapy. Here, we show that type II RAF plus allosteric MEK inhibitors durably blunt the development of acquired MEK inhibitor resistance among cancers with KRAS, NRAS, NF1, BRAFnon-V600 and BRAFV600 mutations, when compared to a combination of type II RAF plus ERK inhibitors. Type II RAF and MEK (versus ERK) inhibitors also display superior capacity to sequester MEK in RAF complexes and uncouple MEK and ERK interaction in acquired resistant tumor subpopulations. Systemically and intratumorally, type II RAF plus MEK inhibitors expand memory and activated/exhausted CD8+ T-cells. Whereas trametinib alone temporally reduces dominant intra-tumoral T-cell clones, type II RAF inhibitor co-treatment reverses this effect and promotes T-cell clonotypic expansion and convergence. Importantly, durably control of tumors by this combination requires CD8+ T-cells. Thus, the prolonged anti-tumor efficacy of type II RAF plus MEK inhibitors reveals exquisite MAPK addiction in common lethal cancer histologies, and the mechanisms include unexpected allosteric perturbation of the MAPK pathway and engagement of anti-tumor CD8+ T-cell immunity.
Project description:RAF kinases play major roles in cancer. BRAFV600E mutants drive ~6% of human cancers. Potent kinase inhibitors exist but show variable effects in different cancer types, sometimes even inducing paradoxical RAF kinase activation. Both paradoxical activation and drug resistance are frequently due to enhanced dimerization between RAF1 and BRAF, which maintains or restores the activity of the downstream MEK-ERK pathway. Here, using quantitative proteomics we mapped the interactomes of RAF1 monomers, RAF1-BRAF and RAF1-BRAFV600E dimers identifying and quantifying >1,000 proteins. In addition, we examined the effects of vemurafenib and sorafenib, two different types of clinically used RAF inhibitors. Using regression analysis to compare different conditions we found a large overlapping core interactome but also distinct condition specific differences. Given that RAF proteins have kinase independent functions such dynamic interactome changes could contribute to their functional diversification. Analysing this dataset may provide a deeper understanding of RAF signalling and mechanisms of resistance to RAF inhibitors.
Project description:Fifty percent of cutaneous melanomas are driven by activated BRAFV600E, but tumors treated with RAF inhibitors, even when they respond dramatically, rapidly adapt and develop resistance. Thus, there is a pressing need to identify the major mechanisms of intrinsic and adaptive resistance and develop drug combinations that target these resistance mechanisms. In a combinatorial drug screen on a panel of 12 treatment-naïve BRAFV600E mutant melanoma cell lines of varying levels of resistance to MAPK pathway inhibition we identified the combination PLX4720, a targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ERBB family of receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that displayed the most resistance to PLX4720. To identify potential mechanisms of resistance to PLX4720 treatment and synergy with lapatinib treatment we performed a multi-platform functional genomics analysis to profile the genome as well as the transcriptional and proteomic responses of these cell lines to treatment with PLX4720. We found modest levels of resistance correlated with the zygosity of the BRAF V600E allele and RTK mutational status. Layered over base-line resistance was substantial upregulation of many ERBB pathway genes in response to BRaf inhibition, thus generating the vulnerability to combination with lapatinib. The transcriptional responses of ERBB pathway genes are associated with a number of transcription factors, including ETS2 and its associated cofactors that represent a convergent regulatory mechanism conferring synergistic drug susceptibility in the context of diverse mutational landscapes. 12 BRAF mutant melanomas and 4 melanomas with WT BRAF were exposed plx4720 treatment to evaluate their responses after 8 hours of treatment. 5 of the 12 BRAF mutant melanomas responses were also evaluated in response to the treatment of lapatinib alone, masitinib alone, the combination of lapatinib with plx4720, or the combination of masitinib with plx4720. All samples were run in at least triplicate.
Project description:KSR1 is a scaffolding protein for the RAS-RAF-MEK-ERK pathway, which is one of the most frequently altered pathways in human cancers. Previous results have shown that KSR1 has a critical role in mutant RAS mediated transformation. Here, we examined the role of KSR1 in mutant BRAF transformation. We used CRISPR/Cas9 to knock out KSR1 in a BRAFV600E transformed melanoma cell line. KSR1 loss produced a complex phenotype characterized by impaired proliferation, cell cycle defects, decreased transformation, decreased invasive migration, increased cellular senescence, and increased apoptosis. To decipher this phenotype, we used a combination of proteomic ERK substrate profiling, global protein expression profiling, and biochemical validation assays. The results suggest that KSR1 directs ERK to phosphorylate substrates that have a critical role in ensuring cell survival. The results furtherindicate that KSR1 loss induces the activation of p38 Mitogen-Activated Protein Kinase (MAPK) and subsequent cell cycle aberrations and senescence. In summary, KSR1 function plays a key role in oncogenic BRAF transformation.
Project description:KSR1 is a scaffolding protein for the RAS-RAF-MEK-ERK pathway, which is one of the most frequently altered pathways in human cancers. Previous results have shown that KSR1 has a critical role in mutant RAS mediated transformation. Here, we examined the role of KSR1 in mutant BRAF transformation. We used CRISPR/Cas9 to knock out KSR1 in a BRAFV600E transformed melanoma cell line. KSR1 loss produced a complex phenotype characterized by impaired proliferation, cell cycle defects, decreased transformation, decreased invasive migration, increased cellular senescence, and increased apoptosis. To decipher this phenotype, we used a combination of proteomic ERK substrate profiling, global protein expression profiling, and biochemical validation assays. The results suggest that KSR1 directs ERK to phosphorylate substrates that have a critical role in ensuring cell survival. The results further indicate that KSR1 loss induces the activation of p38 Mitogen- Activated Protein Kinase (MAPK) and subsequent cell cycle aberrations and senescence. In summary, KSR1 function plays a key role in oncogenic BRAF transformation.
Project description:This is a Phase 1b/2, multi-center, open label umbrella study of patients ≥12 years of age with recurrent, progressive, or refractory melanoma or other solid tumors with alterations in the key proteins of the RAS/RAF/MEK/ERK pathway, referred to as the MAPK pathway.
Project description:BRAF or RAS mutation-induced aberrant activation of the mitogen-activated protein kinase (MAPK) pathway is frequently observed in human cancers. As the key downstream node of MAPK pathway, ERK1/2 is as an important therapeutic target. GDC-0994 (ravoxertinib), an orally bioavailable, highly selective small-molecule inhibitor of ERK1/2, showed acceptable safety and pharmacodynamic profile in a recent phase I clinical trial. In this study, we investigated dependence of the anti-tumor effect of ERK inhibitor GDC-0994 on genetic alterations in the MAPK pathway. Our date showed that the expression of a large number of genes, particularly the genes in the cell cycle pathway, were significantly changed after GDC-0994 treatment in BRAF mutant cells, while no remarkable expression change of such genes was observed in wild-type cells.
Project description:The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation, and survival enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAFV600E have shown great efficacy in the clinic but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated. Here, we investigated a proteolysis targeting chimera (PROTAC) approach to BRAF inhibition. The most effective PROTAC termed P4B displayed superior specificity and inhibitory properties relative to non-PROTAC controls in BRAFV600E cell lines. In addition, P4B displayed utility in two cell lines harboring alternate BRAF mutations that impart resistance to conventional BRAF inhibitors. This work provides a rationale for optimizing the drug-like properties of P4B to enable proof of concept studies in vivo.