Project description:We have previously shown that responses of the oral bacterium Streptococcus gordonii to arginine are co-ordinated by three paralogous regulators: ArcR, ArgR and AhrC. This set of experiments was designed to assess the effects of the ArcR gene regulator on global gene expression in Streptococcus gordonii under high arginine or following a shift to no arginine.
Project description:We have previously shown that responses of the oral bacterium Streptococcus gordonii to arginine are co-ordinated by three paralogous regulators: ArcR, ArgR and AhrC. This set of experiments was designed to assess the effects of the AhrC gene regulator on global gene expression in Streptococcus gordonii under high arginine or following a shift to no arginine.
Project description:We have previously shown that responses of the oral bacterium Streptococcus gordonii to arginine are co-ordinated by three paralogous regulators: ArgR, ArgR and AhrC. This set of experiments was designed to assess the effects of the ArgR gene regulator on global gene expression in Streptococcus gordonii under high arginine or following a shift to no arginine.
Project description:Streptococcus mutans is a common constituent of oral biofilms and a primary etiologic agent of human dental caries. The bacteria associated with dental caries have a potent ability to produce organic acids from dietary carbohydrates and to grow and metabolize in acidic conditions. In this study, we observed supplementation with 1.5% arginine (final concentration) had inhibitory effects on the growth of S. mutans in complex and chemically defined media, particularly when cells were exposed to acid or oxidative stress. Deep-sequencing of RNA (RNA-Seq) comparing the transcriptomes of S. mutans growing in a chemically defined medium with and without 1.5% arginine in neutral and acidic pH conditions and under oxidative stress conditions revealed interesting results. The results provide new insights into the mechanisms of action by which arginine inhibits dental caries through direct adverse effects on multiple virulence-related properties of the most common human dental caries pathogen. The findings significantly enhance our understanding of the genetics and physiology of this cariogenic pathogen.
Project description:This SuperSeries is composed of the following subset Series: GSE33033: ahrC mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + 10 mM arginine GSE33034: argR1 mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + 10 mM arginine GSE33035: argR1-ahrC mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + 10 mM arginine GSE33036: Streptococcus pneumoniae D39 wild-type grown in CDM+10 mM arginine compared to D39 wild type grown in CDM + 0.05 mM arginine Refer to individual Series
Project description:Transcriptional profiling of probiotic Lactobacillus rhamnosus GG during growth in industrial-type whey medium in pH-controlled bioreactor cultures at two different growth pH: 4.8 and 5.8. Keywords: growth phase, growth pH
Project description:Comparison of Streptococcus pneumoniae D39 wild-type grown in CDM+10 mM arginine compared to D39 wild type grown in CDM + 0.05 mM arginine to define the genome-wide transcriptional response to arginine. Details described in Kloosterman TG and Kuipers OP. ArgR1 and AhrC Mediate Arginine-Dependent Regulation of Arginine Acquisition- and Virulence Genes in the Human Pathogen Streptococcus pneumoniae. JBC 2011 Two condition design comparison of wild type strain
Project description:<p>The gut microbiota is essential to host health. Probiotics can be used as a microbiota targeted therapy to improve host health. However, probiotic molecular mechanisms of action and probiotics targeting the small intestinal microbiota are often not elucidated. In this study, we construct a three species synthetic community resembling the upper small intestine. We show that probiotic supplementation results in direct colonization resistance by affecting the metabolism of the community in a probiotic specific manner. Supplementation with Streptococcus thermophilus increased lactate production and reduced the pH, but did not affect the overall metabolic network substantially. In contrast, Lactobacillus casei did not alter lactate production or the pH, but increased the resistance to perturbations and nutrient utilization. Furthermore, supplementation of L. casei together with kynurenine increased metabolism along the kynurenine pathway and resulted in an elevated concentration of kynurenic acid, possibly leading to indirect colonization resistance. Together, we show how network construction can be used to improve the current or identify novel microbiota-targeted therapies.</p>