Project description:Butyrate-producing bacteria colonise the gut of humans and non-human animals, where they produce butyrate, a short-chain fatty acid with known health benefits. Butyrate-producing bacteria also reside in soils and soil bacteria can drive the assembly of airborne bacterial communities (the aerobiome). Aerobiomes in urban greenspaces are important reservoirs of butyrate-producing bacteria as they supplement the human microbiome, but soil butyrate producer communities have rarely been examined in detail. Here, we studied soil metagenome taxonomic and functional profiles and soil physicochemical data from two urban greenspace types: sports fields (n = 11) and nature parks (n = 22). We also developed a novel method to quantify soil butyrate and characterised the in situ activity of butyrate-producing bacteria. We show that soil butyrate was higher in sports fields than nature parks and that sports fields also had significantly higher relative abundances of the terminal butyrate production genes buk and butCoAT than nature parks. Soil butyrate positively correlated with buk gene abundance (but not butCoAT). Soil moisture (r = .50), calcium (r = -.62), iron (ρ = .54), ammonium nitrogen (ρ = .58) and organic carbon (r = .45) had the strongest soil abiotic effects on soil butyrate concentrations and iron (ρ = .56) and calcium (ρ = -.57) had the strongest soil abiotic effects on buk read abundances. Overall, our findings contribute important new insights into the role of sports fields as key exposure reservoirs of butyrate producing bacteria, with important implications for the provision of microbiome-mediated human health benefits via butyrate.
| S-EPMC11262829 | biostudies-literature
Project description:Butyrate-producing bacteria dynamics in urban greenspace soils
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited therapeutic options. The diversity and composition of intra-tumoral microbiota are associated with PDAC outcomes, and modulating the tumor microbiota has the potential to influence tumor growth and host-immune response. Here, we explore whether intervention with butyrate-producing probiotic can limit PDAC progression. By analyzing TCGA (PAAD) dataset, we found that tumoral butyrate-producing microbiota links to better prognosis and less aggressive features of PDAC. Intervention with Clostridium butyricum or its metabolite butyrate triggered superoxidative stress and intracellular lipid accumulation, which enhanced ferroptosis susceptibility of PDAC. Our study reveals a novel antitumor mechanism of butyrate, and suggests the therapeutic potential of butyrate-producing probiotics in PDAC.
Project description:The composition of gut microbiota, including butyrate-producing bacteria (BPB), is influenced by diet and physiological conditions. As such, given the importance of butyrate as an energetic substrate in colonocytes, it is unclear whether utilization of this substrate by the host would enhance BPB levels, thus defining a host-microbiome mutualistic relationship based on cellular metabolism. Here, it is shown through using a mouse model that lacks short-chain acyl dehydrogenase (SCAD), which is the first enzyme in the beta-oxidation pathway for short-chain fatty acids (SCFAs), that there is a significant diminishment in BPB at the phylum, class, species, and genus level compared to mice that have SCAD. Furthermore, SCAD-deficient mice do not show a prebiotic response from dietary fiber. Thus, oxidation of SCFAs by the host, which includes butyrate, is important in promoting BPB. These data help define the functional importance of diet-microbiome-host interactions toward microbiome composition, as it relates to function.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals.