Project description:EXOSC10 is a catalytic subunit of the nuclear RNA exosome with an exoribonuclease activity. The enzyme processes and degrades different classes of RNAs. To delineate the role of EXOSC10 during oocyte growth, specific Exosc10 inactivation was performed in the oocytes from the primordial follicle stage onward using the Gdf9-iCre; Exosc10f/- mouse model (Exosc10cKO(Gdf9)). Exosc10cKO(Gdf9) female mice are infertile. The onset of puberty and the estrus cycle in mutants are initially normal and ovaries contain all follicle classes. By the age of eight weeks, vaginal smears reveal irregular estrus cycles and mutant ovaries display a complete depletion of follicles. Mutant oocytes retrieved from the oviduct are degenerated, sometimes showing an enlarged polar body which may reflect a defective first meiotic division. Under fertilization conditions, the mutant oocytes do not enter into an embryonic development process. Furthermore, we conducted a comparative proteome analysis of wild type and Exosc10 knockout mouse ovaries and identified EXOSC10-dependent proteins involved in many biological processes, such as meiotic cell cycle progression and oocyte maturation. Our results unambiguously demonstrate an essential role for EXOSC10 in oogenesis and may serve as a model for primary ovarian insufficiency in humans.
Project description:In our RIP-seq experiment, RNAs were purified from the E12.5 WT mouse cortex. By sequencing of the Exosc10-bound RNAs, binding enrichment of Exosc10 on 3159 transcripts was identified (adjusted p-value < 0.05). GO analysis revealed that the Exosc10-bound transcripts participate in various processes of brain development.
Project description:Reduced oxygen availability (hypoxia) triggers adaptive cellular responses via hypoxia-inducible factor (HIF)-dependent transcriptional activation. Adaptation to hypoxia also involves transcription-independent processes like post-translational modifications, however these mechanisms are poorly characterized. Investigating the involvement of protein SUMOylation in response to hypoxia, we discovered that hypoxia strongly decreases the SUMOylation of Exosome subunit 10 (EXOSC10), the catalytic subunit of the RNA exosome, in a HIF-independent manner. EXOSC10 is a multifunctional exoribonuclease enriched in the nucleolus that mediates the processing and degradation of various RNA species. We demonstrate that the Ubiquitin-specific protease 36 (USP36) SUMOylates EXOSC10 and we reveal SUMO1/sentrin-specific peptidase 3 (SENP3) as the enzyme mediating deSUMOylation of EXOSC10. Under hypoxia, EXOSC10 dissociates from USP36 and translocates from the nucleolus to the nucleoplasm concomitant with its deSUMOylation. Loss of EXOSC10 SUMOylation does not detectably affect rRNA maturation but affects the mRNA transcriptome by modulating the expression levels of hypoxia-related genes. Our data suggest that dynamic modulation of EXOSC10 SUMOylation and localization under hypoxia regulates the RNA degradation machinery to facilitate cellular adaptation to low oxygen conditions.
Project description:The RNA exosome is an essential 3’ to 5’ processing exoribonuclease complex that mediates degradation, processing, and quality control of virtually all eukaryotic RNAs. The nucleolar RNA exosome, consisting of a 9-subunit core and a distributive 3ʹ to 5ʹ exonuclease EXOSC10, plays a critical role in processing and degrading nucleolar RNAs, including pre-ribosomal RNA (pre-rRNA). However, how the RNA exosome is regulated in the nucleolus is poorly understood. Here, we report that the nucleolar ubiquitin-specific protease USP36 is a novel regulator of the nucleolar RNA exosome. USP36 binds to the RNA exosome through direct interaction with EXOSC10. Interestingly, USP36 does not significantly regulate the levels of EXOSC10 and other exosome subunits. Instead, it mediates EXOSC10 SUMOylation at Lys (K) 583. Mutating K583 impaired the binding of EXOSC10 to pre-rRNAs and the K583R mutant failed to rescue the defects in rRNA processing and cell growth inhibition caused by knockdown of endogenous EXOSC10, indicating that EXOSC10 SUMOylation is critical for the exosome function in rRNA processing. Furthermore, USP36 itself is a rRNA-binding protein that associates pre-rRNA. These results suggest that USP36 acts as a novel SUMO ligase to mediate EXOSC10 SUMOylation critical for the RNA exosome function in rRNA processing and ribosome biogenesis.
Project description:RNA-seq on K562 cells treated with a CRISPR gRNA against EXOSC10. (EXOSC10-BGKcLV21) For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
Project description:RNA-seq on HepG2 cells treated with a CRISPR gRNA against EXOSC10. (EXOSC10-BGHcLV22) For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf