Project description:Multiomics of faecal samples collected from individuals in families with multiple cases of type 1 diabetes mellitus (T1DM) over 3 or 4 months. Metagenomic and metatranscriptomic sequencing and metaproteomics were carried out, as well as whole human genome sequencing. Phenotypic data is available.
Project description:Multiomics of faecal samples collected from individuals in families with multiple cases of type 1 diabetes mellitus (T1DM) over 3 or 4 months. Metagenomic and metatranscriptomic sequencing and metaproteomics were carried out, as well as whole human genome sequencing. Phenotypic data is available.
2017-10-19 | MSV000081630 | MassIVE
Project description:Whole genome sequencing project of multiple isolates from human faecal samples
Project description:All-genome genotyping data from French wild boar populations could be useful for diversity studies in the wild boar species as well as for phylogeny studies with domestic pig populations. The data produced in this experiment concern 362 wild boars collected between 2013 and 2019 in various French departments. The biological samples that were collected were either blood samples or ear biopsies. Genomic DNA was extracted from cells after proteinase K lysis and ethanol precipitation. DNA was hybridized on the GeneSeek Genomic Profiler porcine beadchip (GGP70K HD Porcine Illumina) using Infinium technology. Fluorescence intensity data obtained for each Single Nucleotide Polymorphism were analyzed with GenomeStudio software to infer genotypes. In addition, the raw fluorescence data could be useful for Copy Number Variation studies.
Project description:Precise definition of porin profiles is of critical importance to understand the role of porins in antimicrobial resistance. In this study, the outer membrane proteins (OMP) profiles of 26 clinical isolates of Klebsiella pneumoniae and of strain ATCC 13883 (wild-type) and ATCC 700603 (producing SHV-18) have been determined using both sodium-dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization–time of flight/mass spectrometry (MALDI-TOF/MS). SDS-PAGE was performed using both homemade and commercial gels, and protein bands were identified by liquid chromatography coupled to mass spectrometry. A rapid extraction method was used to analyse OMPs by MALDI-TOF/MS. The sequences of porin genes were obtained by whole genome sequencing (WGS) and mutations were defined by BLAST. Same results were obtained for all strains either using SDS-PAGE or MALDI-TOF/MS. SDS-PAGE showed protein bands of ~35, ~36, and ~37 KDa, identified as OmpA, OmpK36 and OmpK35, respectively. By MALDI-TOF/MS, peaks at ~35700 (OmpA), ~37000 (OmpK35), and ~38000 (OmpK36) m/z were detected. ompK35 was intact in nine wild-type isolates and was truncated in 13 isolates, but OmpK35 was not observed in 3 isolates without mutations in ompK35. One point mutation was detected in another isolate and multiple mutations were detected in the remaining isolate. ompK36 was truncated in two isolates lacking this protein and presented one point mutation (n=1) or multiple mutations in the remaining isolates. In conclusion, MALDI-TOF/MS was reliable for porin detection, but because of the complex regulation of porin genes, WGS cannot always anticipate protein expression, as observed with SDS-PAGE and MALDI-TOF/MS.
Project description:Members of the Mycobacterium (M.) abscessus complex (MABC) are rapidly growing mycobacteria showing smooth and/or rough colony morphotype. While not as virulent as M. tuberculosis, they can cause soft tissue infection and fatal pulmonary disease, especially in patients with cystic fibrosis. Diagnosing MABC pulmonary disease is challenging since the isolation of M. abscessus from respiratory samples is in itself not diagnostic and the clinical features are often non-specific. Immunologic assays, which could aid in the understanding and diagnosis of the disease, are not available. In this study eight rough and six smooth colony morphotype isolates were collected from seven clinical MABC strains and the M. abscessus reference strain ATCC19977, as six strains showed both morphotypes simultaneously and two strains only showed a rough morphotype. Clinical isolates were submitted to whole genome sequencing. Quantitative proteomic analysis was performed on bacterial lysates and the culture supernatant of all 14 isolates. Supernatant proteins present in all isolates were compared in a BLAST search against other clinically significant mycobacterial species to determine species-specific proteins of MABC. In silico B- and T-cell epitope prediction was performed for species-specific proteins. All clinical strains were found to be M. abscessus ssp. abscessus. Six of seven rough colony clinical isolates contained genetic changes in the MAB_4099c gene, which is a likely genetic basis for the rough morphotype. Proteomic analysis detected 3 137 different proteins in total of which 79 proteins were found in the culture supernatants of all isolates. BLAST analyses of these 79 proteins identified 12 of those exclusively encoded by all members of MABC plus M. immunogenum. In silico prediction of epitopes predicted B- and T-cell epitopes in all these 12 species-specific proteins, rendering them promising candidates for future studies on immune pathogenesis and immune diagnostic tools for MABC disease.