Project description:Differentiation of 3T3-L1 cells into adipocytes involves a highly orchestrated series of events including clonal expansion, growth arrest and terminal differentiation. The mechanisms coordinating these different steps are not yet fully understood. Here we investigated whether micro (mi)RNAs play a role in this process. Microarray analysis was performed to detect miRNA expression during 3T3-L1 preadipocyte differentiation. Several miRNAs, including let-7, were up-regulated during 3T3-L1 adipogenesis. Ectopic introduction of let-7 into 3T3-L1 cells inhibited clonal expansion as well as terminal differentiation. The mRNA encoding high mobility group AT-hook 2 (HMGA2), a transcription factor that regulates growth and proliferation in other contexts, was inversely correlated with let-7 levels during 3T3-L1 cell adipogenesis, and let-7 markedly reduced HMGA2 concentrations. Knockdown of HMGA2 inhibited 3T3-L1 differentiation. These results suggest that let-7 plays an important role in adipocyte differentiation and that it does so in part by targeting HMGA2, thereby regulating the transition from clonal expansion to terminal differentiation.
Project description:3T3-L1 fibroblasts are a commonly used in vitro model for adipogenesis. When induced with hormones, they differentiate into mature fat cells. Here, microarrays were used to study 3T3-L1 adipose differentiation through time. Keywords: time course
Project description:Differentiation of 3T3-L1 cells into adipocytes involves a highly orchestrated series of events including clonal expansion, growth arrest and terminal differentiation. The mechanisms coordinating these different steps are not yet fully understood. Here we investigated whether micro (mi)RNAs play a role in this process. Microarray analysis was performed to detect miRNA expression during 3T3-L1 preadipocyte differentiation. Several miRNAs, including let-7, were up-regulated during 3T3-L1 adipogenesis. Ectopic introduction of let-7 into 3T3-L1 cells inhibited clonal expansion as well as terminal differentiation. The mRNA encoding high mobility group AT-hook 2 (HMGA2), a transcription factor that regulates growth and proliferation in other contexts, was inversely correlated with let-7 levels during 3T3-L1 cell adipogenesis, and let-7 markedly reduced HMGA2 concentrations. Knockdown of HMGA2 inhibited 3T3-L1 differentiation. These results suggest that let-7 plays an important role in adipocyte differentiation and that it does so in part by targeting HMGA2, thereby regulating the transition from clonal expansion to terminal differentiation. 3T3-L1 cells were induced to differentiation into mature adipocytes using a canonical DMI cocktail. The time point at two days after confluency of 3T3-L1 was defined as day 0. Samples were collected at day 0, day 1, day 4, and day 7. The expression of microRNAs at day 1, day 4, and day 7 was compared to that of day 0.
Project description:Transcriptional profiling of mouse 3T3-L1 adipocytes. The objective of this study is to explore gene expression profiles of 3T3-L1 adipocytes in response to GDE5 siRNA transfection.
Project description:We aimed to characterise genome-wide ZEB1 binding pattern in 3T3-L1 cells at distinct timepoints of adipogenic differentiation (days -2, 0, 2 and 4). We performed replicate experiments at days -2 and 0 and single experiments at days 2 and 4.
Project description:Target genes of Fbxl10 during 3T3-L1 adipogenesis was analyzed 3T3-L1 cells overexpressing Fbxl10 using retrovirus system containing LTR promoter were differentiated and RNA was extracted at day 2 of differentiation