Project description:Transcriptome analysis using a microarray equipped with probes for genes and repetitive sequences has been performed to examine the expression change in rice anther. We performed transcriptome analysis in 13 rice lines with different cold tolerances at the booting stage because the low temperature at this stage resulted in pollen sterility. From our study, it was found that genome-wide expression is negatively correlated with the degree of cold tolerance.
Project description:The booting stage of rice shows the most sensitivity to cold stress, and low-temperature stress causes irreversible pollen sterility. We performed transcriptome analysis using RNA-seq to investigate the response of rice anthers to low-temperature stress. In this RNA-seq analysis, to validate the results of transcriptome analysis of anthers from 13 rice lines using microarrays, four cultivars were selected for analysis from the 13 tested for microarrays.
Project description:Wheat, an important human food crop, is very sensitive to temperature changes. Thermosensitive sterile lines (TMS) is a natural material for exploring the effects of anther development and temperature changes on male fertility. In order to study the possible molecular mechanism of regulating protein activity during anther fertility alteration, proteomics analysis based on high resolution mass spectrometry were used to study the binuclear anther of wheat YS3038.
Project description:The genome-wide transcriptome analyses using microarray probes containing genes and repeat sequences have been performed to examine response to the low-temperature in rice. We have particularly focused on the rice anther at the booting stage, since the low-temperature at this stage resulted in pollen abortion. The results demonstrated that the low-temperature stress caused genome-wide changes of transcriptional activities not only in genes, but also in repeat sequences of the rice anther. The degrees of the temperature responsive changes varied among the rice strains.
Project description:Background – In flowering plants, the anther is the site of male gametophyte development. Two major events in the development of the male germline are meiosis and the asymmetric division in the male gametophyte that gives rise to the vegetative and generative cells, and the following mitotic division in the generative cell that produces two sperm cells. Anther transcriptomes have been analyzed at progressive stages of development by using microarray and sequence by synthesis technologies to identify genes that regulate anther development. Here we have carried out a comprehensive analysis of rice anther transcriptomes at four distinct stages of development with a focus to identify regulatory components contributing to male meiosis and germline development. Further, these transcriptomes have been compared with transcriptomes of 10 stages of rice vegetative and seed development to identify genes that express specifically during anther development. Results - To understand the molecular processes that lead to male gametophyte development, transcriptome profiling of four stages of anther development in rice [pre-meiotic (PMA), meiotic (MA), anthers at single-celled (SCP) and tri-nucleate pollen (TPA)] was conducted. Around 22,000 genes were found to be expressed in at least one of the anther developmental stages, with the highest number in MA (18,090) and lowest (15,465) in TPA. Comparison of these transcriptome profiles to an in-house generated microarray-based transcriptomics database comprising of 10 stages/tissues of vegetative as well as reproductive development in rice resulted in the identification of 1,000 genes that are specifically expressed in anther stages. Of them the expression of 453 genes was found to be specific to TPA, whereas 78 and 184 genes were expressed specifically in MA and SCP. Gene ontology and pathway analysis of specifically expressed genes revealed that transcription factors and protein folding, sorting and degradation pathway genes dominated in MA, whereas in TPA, those coding for cell structure and signal transduction components were in abundance. Interestingly, about 50% of the genes with anther-specific expression have not been annotated so far. Conclusions - These data not only provide the transcriptome constituents of four landmark stages of anther development but also identify genes that express exclusively in these stages and therefore may contribute to specific aspects of anther and/or male gametophyte development in rice. Moreover, these gene sets assist in building a deeper understanding of underlying regulatory networks and in selecting candidates for gene function validation.
Project description:Background – In flowering plants, the anther is the site of male gametophyte development. Two major events in the development of the male germline are meiosis and the asymmetric division in the male gametophyte that gives rise to the vegetative and generative cells, and the following mitotic division in the generative cell that produces two sperm cells. Anther transcriptomes have been analyzed at progressive stages of development by using microarray and sequence by synthesis technologies to identify genes that regulate anther development. Here we have carried out a comprehensive analysis of rice anther transcriptomes at four distinct stages of development with a focus to identify regulatory components contributing to male meiosis and germline development. Further, these transcriptomes have been compared with transcriptomes of 10 stages of rice vegetative and seed development to identify genes that express specifically during anther development. Results - To understand the molecular processes that lead to male gametophyte development, transcriptome profiling of four stages of anther development in rice [pre-meiotic (PMA), meiotic (MA), anthers at single-celled (SCP) and tri-nucleate pollen (TPA)] was conducted. Around 22,000 genes were found to be expressed in at least one of the anther developmental stages, with the highest number in MA (18,090) and lowest (15,465) in TPA. Comparison of these transcriptome profiles to an in-house generated microarray-based transcriptomics database comprising of 10 stages/tissues of vegetative as well as reproductive development in rice resulted in the identification of 1,000 genes that are specifically expressed in anther stages. Of them the expression of 453 genes was found to be specific to TPA, whereas 78 and 184 genes were expressed specifically in MA and SCP. Gene ontology and pathway analysis of specifically expressed genes revealed that transcription factors and protein folding, sorting and degradation pathway genes dominated in MA, whereas in TPA, those coding for cell structure and signal transduction components were in abundance. Interestingly, about 50% of the genes with anther-specific expression have not been annotated so far. Conclusions - These data not only provide the transcriptome constituents of four landmark stages of anther development but also identify genes that express exclusively in these stages and therefore may contribute to specific aspects of anther and/or male gametophyte development in rice. Moreover, these gene sets assist in building a deeper understanding of underlying regulatory networks and in selecting candidates for gene function validation. Overall twelve samples were analyzed representing four anther development stages, with three replicates of each stage.
Project description:The genome-wide transcriptome analyses using microarray probes containing genes and repeat sequences have been performed to examine response to the low-temperature in rice. We have particularly focused on the rice anther at the booting stage, since the low-temperature at this stage resulted in pollen abortion. The results demonstrated that the low-temperature stress caused genome-wide changes of transcriptional activities not only in genes, but also in repeat sequences of the rice anther. The degrees of the temperature responsive changes varied among the rice strains. The five rice strains exposed to the low temperature at 12°C for four days, were used for the microarray analyses. RNA was extracted from the anthers one day (C1), three days (C3) and five days (C5: this is one day after completion of the cool treatment) after the cool treatment and non-treated anthers (C0) with three biological replicates.
Project description:In flowering plants, the male gametophyte, the pollen, develops in the anther. Complex patterns of gene expression in both the gametophytic and sporophytic tissues of the anther regulate this process. The gene expression profiles of the microspore/pollen and the sporophytic tapetum are of particular interest. In this study, a microarray technique combined with laser microdissection (44K LM-microarray) was developed and used to characterize separately the transcriptomes of the microspore/pollen and tapetum in rice. Expression profiles of 11 known tapetum specific-genes were consistent with previous reports. Based on the spatiotemporal expression patterns and gene ontology (GO) categories of anther-expressed genes, some noteworthy expression patterns are discussed in connection with various important biological events of anther development. The separated transcriptomes of rice microspore/pollen and tapetum were measured at the premeiosis, meiosis, tetrad, uninuclear, bicellular, and tricelluar stages by using laser microdissection (LM)-mediated microarray.
Project description:In flowering plants, the male gametophyte, the pollen, develops in the anther. Complex patterns of gene expression in both the gametophytic and sporophytic tissues of the anther regulate this process. The gene expression profiles of the microspore/pollen and the sporophytic tapetum are of particular interest. In this study, a microarray technique combined with laser microdissection (44K LM-microarray) was developed and used to characterize separately the transcriptomes of the microspore/pollen and tapetum in rice. Expression profiles of 11 known tapetum specific-genes were consistent with previous reports. Based on the spatiotemporal expression patterns and gene ontology (GO) categories of anther-expressed genes, some noteworthy expression patterns are discussed in connection with various important biological events of anther development.