Project description:We found that auxin stimulates gene expression of DWF4, which encodes a rate-dertermining step in brassinosteroid biosynthesis pathways. This increased gene expressioin subsequently led to elevation of the biosynthetic flux in Arabidopsis roots. To determine the list of genes that are regulated by auxin-synthesizing brassinosteroids, we challenged Arabidopsis seedlings with either auxin only or auxin plus brassinosteroid biosynthetic inhibitor brassinazole. Keywords: Hormone treatment
Project description:We found that auxin stimulates gene expression of DWF4, which encodes a rate-dertermining step in brassinosteroid biosynthesis pathways. This increased gene expressioin subsequently led to elevation of the biosynthetic flux in Arabidopsis roots. To determine the list of genes that are regulated by auxin-synthesizing brassinosteroids, we challenged Arabidopsis seedlings with either auxin only or auxin plus brassinosteroid biosynthetic inhibitor brassinazole. Keywords: Hormone treatment Arabidopsis seedlings (Columbia ecotype) were grown for 10 d on 1× MS agar-solidified media under long-day conditions (16:8, white light and dark cycle). The seedlings were then transferred to 2 different liquid media containing either 10–7 M 2,4-D or 10–7 M 2,4-D plus 10–6 M brassinazole. After 8 h of treatment, the seedlings were blotted with paper towels to remove excess media and subject to total RNA isolation. Total RNAs isolated from each batch were prepared from 3 replicate seedlings using an RNeasy plant mini kit (Qiagen, Germany).
Project description:Analysis of brassinosteroid (BR) and auxin effects on gene expression in Arabidopsis roots. Our genomic results indicate that BR and auxin induce largely opposite gene expression responses in primary roots.
Project description:Analysis of brassinosteroid (BR) and auxin effects on gene expression in Arabidopsis roots. Our genomic results indicate that BR and auxin induce largely opposite gene expression responses in primary roots. RNA-Seq for 7-day-old Arabidopsis Col-0, dwf4, bri1-116, and bri1-116;bzr1-1D roots grown on regular medium and treated with brassinolide, auxin or mock solution for 4 hr.
Project description:Brassinosteroid (BR) and auxin co-regulate plant growth in a process termed cross-talking. Based on the assumption that their signal transductions are partially shared, inhibitory chemicals for both signal transductions were screened from a commercially-available library. A chemical designated as NJ15 (ethyl 2-[5-(3,5-dichlorophenyl)-1,2,3,4-tetrazole-2-yl]acetate) diminished the growth promotion of both adzuki bean epicotyls and Arabidopsis seedlings, by either the application of BR or auxin. To understand its target site(s), bioassays with a high dependence on either the signal transduction of BR (BR-signaling) or of auxin (AX-signaling), were performed. NJ15 inhibited photomorphogenesis of Arabidopsis seedlings grown in the dark, which mainly depends on BR-signaling, while NJ15 also inhibited their gravitropic responses mainly depending on AX-signaling. On the study for the structure-activity relationships of NJ15 analogues, they showed strong correlations on the inhibitory profiles between BR- and AX-signalings. These correlations imply that NJ15 targets the downstream pathway after the integration of BR- and AX-signals.
Project description:De novo shoot organogenesis (DNSO) is a commonly used pathway for plant biotechnology, and is a hormonally regulated process, where auxin and cytokinin coordinates suites of genes encoding transcription factors, general transcription factors, and RNA metabolism machinery genes. Here we report that silencing Arabidopsis thaliana CTD phosphatase-like 4 (CPL4RNAi), which increases phosphorylation level of RNA polymerase II (pol II) CTD, altered lateral root development and DNSO efficiency of the host plants, suggesting an importance of precise control of pol II activities during DNSO. Under standard condition, roots of CPL4RNAi lines produced no or few lateral roots. When induced by high concentration of auxin, CPL4RNAi lines failed to produce focused auxin maxima at the meristem of lateral root primordia, and produced fasciated lateral roots. By contrast, root explants of CPL4RNAi lines were highly competent for DNSO. Efficient DNSO of CPL4RNAi lines were observed even under 10 times less cytokinin required for wild type explants. Transcriptome analysis showed CPL4RNAi but not wild type explants expressed high levels of shoot meristem related genes during priming by high auxin/cytokinin ratio, and subsequent shoot induction with cytokinin. These results indicate that CPL4 functions as a repressor of the early stage of DNSO, during acquisition of competency by high auxin/cytokinin ratio, perhaps via regulation of pol II activities.