Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin.
Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin.
Project description:Compare the physiological state between static, aerobic, and respiratory growth of Lactococcus lactis subsp. lactis CHCC2862 using whole genome transcriptomes. NOTE: the biological replicate array GSM243206 is dye-swapped relative to GSM202337 (unlike the two other biological replicate arrays GSM243203 and GSM24205). Keywords: Physiological response to aerobic and respiratory growth relative to static.
Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin. Strains were cultured on skimmed raw milk ultrafiltration (UF) retentate. The UF retentate was pre-incubated overnight at 4 °C, then 45 minutes at 50 °C and homogenized during 1.5 minutes at 24 000 rpm with an ultra-turax (Imlab, France). After addition of rennet (0.3 µl ml-1), 400 g UF retentate was inoculated at 2 106 CFU/g with L. lactis subsp. lactis strains. After incubation for 8 hours at 30 °C, the cheeses were transferred at 12° C until 7 days for ripening simulation. At least three independent cultures of the six strains were performed. Total RNA was extracted from cells grown 24 hours in UF-cheese and radiolabelled cDNA were prepared and hybridized on nylon arrays. 1948 amplicons specific of Lactococcus lactis IL1403 genes were spotted twice on the array. 3 independent repetitions were performed.
Project description:Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans, and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially-available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains.
Project description:Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans, and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially-available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains.
Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin. Strains were cultured on M17. At least three independent cultures of the six strains were performed. Genomic DNA was extracted from cells grown overnight on M17 and radiolabelled cDNA were prepared and hybridized on nylon arrays. 1948 amplicons specific of Lactococcus lactis IL1403 genes were spotted twice on the array. 3 independent repetitions were performed.
Project description:This study aimed to investigate the effects of oral administration of lactic acid bacteria (LAB) on gene expression in murine ileum. Two LAB strains, Lactococcus lactis subsp. lactis C59 and Lactobacillus rhamnosus GG, were administered to mice for 2 weeks. Microarray analysis was performed using total RNA from upper and lower ileum to detail the gene expression of 3 groups; control, C59-administered and GG-administered. Gene expression of upper ileum was less affected by administered strains than that of lower ileum and the latter was strain-specifically affected.
Project description:This SuperSeries is composed of the following subset Series: GSE23987: Transcriptomic profiles of six strains of Lactococcus lactis in ultrafiltration-cheese model GSE23990: Comparative genome hybridization profiles of six strains of Lactococcus lactis Refer to individual Series
Project description:Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans, and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially-available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains. 140 samples total. Evaluation of changes in a model community's structure over time after exposure to a consortium of 5 fermented milk product (FMP) strains.