Project description:In this study, the transcriptome of the introgression tomato breeding line BC5S2 and its parental line, Moneymaker (MM) were comparatively analyzed to identify candidate genes related to the differential induction effect of methyl-jasmonate (MeJA) on trichome-mediated resistance responses in these tomato lines.
Project description:Trichomes are the hair-like structures that are widely present on the surface of aerial organs and function in plant defense against biotic and abiotic stresses. Previous studies focus on the single cell trichomes in Arabidopsis and cotton, or multicellular glandular trichomes in tomato, but the developmental process and molecular mechanisms controlling multicellular non-glandular trichome development are largely neglected. Here, we extensively characterized the fruit trichome (spine) development in wild type cucumber and in a tiny branched hair (tbh) mutant that contains a spontaneous mutation and has hairless foliage and smooth fruit surface. Our data indicated that cucumber trichome was multicellular and non-glandular, with no branches or endoreduplication. Further, the major feature of cucumber trichome development was spine base expansion. Transcriptome profiling through Digital Gene Expression indicated that meristem-related genes and transcription factors were implicated in the fruit spine development, and polarity regulators were upregulated during spine base expansion. qRT-PCR verified the reliability of our RNA-SEQ data, and in situ hybridization confirmed the enriched expression of meristem regulators CUP-SHAPED COTYLEDON3 (CUC3) and STM (SHOOT MERISTEMLESS) , as well as the abaxial identity gene KANADI (KAN) in cucumber fruit spine. Together, our results suggest a distinct regulatory pathway involving meristem genes and polarity regulators in multicellular trichome development in cucumber.
Project description:The occurrence of Tomato chlorosis virus (ToCV) disease seriously damages tomato growth and yield, and there is no effective way to control ToCV transmission. So far, no studies have reported exploring the interaction between ToCV and tomato at the single cellular level. In this study, single cell RNA sequence was performed on a total of 26720 individual cells from healthy and ToCV-infected tomato leaves. We through identifying cell types, the first tomato leaf cell atlas was successfully constructed. In situ hybridization experiments identified specific marker genes that can be used to identify tomato cell types. Moreover, we have characterized transcription factors that may play a key role in tomato response to ToCV infection, and described the trichome differentiation trajectory during ToCV infection through pseudotime analysis. In conclusion, we proved the feasibility of single-cell sequencing to study the response of plants to biotic stress, and put forward new insights into the interaction between ToCV and tomato from the cellular level. Our data will lay the foundation for following studies between ToCV and plants, and will also provide a valuable reference for future research on non-model plant single cells.
Project description:Trichomes of Arabidopsis thaliana have been broadly used to study cell development, cell differentiation and cell wall biogenesis. In this context, the exposed position, extraordinary size and characteristic morphology of trichomes featured particularly the exploration of trichome mutant phenotypes. However, trichome-specific biochemical or -omics analyses require a proper separation of trichomes from residual plant tissue. Thus, different strategies were proposed in the past for trichome isolation, which mostly rely on harsh conditions. To improve trichome-leaf separation, we revised a previously proposed method for isolating A. thaliana trichomes by optimizing the mechanical and biochemical specifications for trichome release. Furthermore, we introduced a density gradient centrifugation step to remove residual plant debris. We found that prolonged, yet mild seedling agitation increases the overall trichome yield by about 62% compared to the original protocol. We noticed that subsequent density gradient centrifugation further visually enhances trichome purity, which could be advantageous for downstream analyses. Histochemical and biochemical investigation of trichome cell wall composition indicated that gentle agitation during trichome release largely preserves trichome integrity. We used enriched and purified trichomes for proteomic analysis and present a reference data set of trichome-resident and -enriched proteins.
Project description:Trichomes are the hair-like structures that are widely present on the surface of aerial organs and function in plant defense against biotic and abiotic stresses. Previous studies focus on the single cell trichomes in Arabidopsis and cotton, or multicellular glandular trichomes in tomato, but the developmental process and molecular mechanisms controlling multicellular non-glandular trichome development are largely neglected. Here, we extensively characterized the fruit trichome (spine) development in wild type cucumber and in a tiny branched hair (tbh) mutant that contains a spontaneous mutation and has hairless foliage and smooth fruit surface. Our data indicated that cucumber trichome was multicellular and non-glandular, with no branches or endoreduplication. Further, the major feature of cucumber trichome development was spine base expansion. Transcriptome profiling through Digital Gene Expression indicated that meristem-related genes and transcription factors were implicated in the fruit spine development, and polarity regulators were upregulated during spine base expansion. qRT-PCR verified the reliability of our RNA-SEQ data, and in situ hybridization confirmed the enriched expression of meristem regulators CUP-SHAPED COTYLEDON3 (CUC3) and STM (SHOOT MERISTEMLESS) , as well as the abaxial identity gene KANADI (KAN) in cucumber fruit spine. Together, our results suggest a distinct regulatory pathway involving meristem genes and polarity regulators in multicellular trichome development in cucumber. Using Digital Gene Expression technology to compare the genome-wide gene expression profiles in the fruit spines of wild type cucumber and the tbh mutant, as well as the fruit spines on fruits of 0.5cm and 1.6cm long, repectively. Two biological repelicates were generated for each tissue.