Project description:Glyphosate and 2,4-D are among the most widely used herbicides globally, leading to environmental presence, food contamination, and human contact. Investigations based on current toxicological limits or populational-based herbicide exposures are warranted, and in vitro bioassays provide useful tools for toxicological screening. Thus, this study evaluated the transcriptomic implications of non-cytotoxic exposures to glyphosate, its metabolite aminomethylphosphonic acid (AMPA), or 2,4-D - or to their mixes - on hepatic cells. The half maximal effective concentration (IC50) of each herbicide was calculated (cell viability) in human hepatic C3A cells and 1000-fold lower concentrations were used for transcriptomic analysis (RNA-Seq) after 48h exposure, resembling current toxicological limits and considering herbicide water levels (glyphosate: 0.95 µg/mL; AMPA: 3.7 µg/mL; 2,4-D: 0.56 µg/mL). Glyphosate exposure enriched MAPK-related biological processes (upregulated TNF, FOS, IGF1, and PDGFB), and downregulated genes associated with lipid metabolism (CD36 and PPARA). Many AMPA exposure-related differentially expressed genes (DEGs, such as PFKFB3, HK2, and ALDOA) were associated with glucose metabolic pathways. Glyphosate and its metabolite yielded a common molecular signature, as illustrated by principal component analysis and the function of 212 shared DEGs. The exposure to 2,4-D was associated with the JNK cascade and the solute carrier family annotations. The herbicide mixtures had a discrete effect on enhancing the impact of individual herbicides, although important epithelial-mesenchymal transition genes were exclusively modified by the mixes (COL11A2, LOXL3, SNAI1). Altogether, our data reveals new perspectives on the short-term molecular effects of herbicide exposure in liver cells, emphasizing potential avenues for further exploration.
Project description:In this study, the upstream and downstream production processes of curdlan from Priestia megaterium were optimized to enhance its yield. Additionally, a novel extraction method was developed for curdlan recovery. Optimization studies were conducted using Central composite design (CCD). Curdlan yield improved from 0.15 g/L (unoptimized) to 0.46 g/L (3-fold increase) when fermentation was carried out in CCD-optimized media of (w/v) sucrose 20%, urea 0.1%, KH2PO4 0.02%, agitation speed 250 rpm. To further enhance curdlan yield during extraction, ultrasonication was incorporated as a novel step into the conventional method of acid/alkali-assisted curdlan recovery. A two-step optimization was chosen for extraction, namely, one-factor-at-a-time (OFAT) and CCD, wherein the optimized extraction parameters were determined to be 25 s sonication, 1 N NaOH, and 2 h solubilization time. The curdlan yield improved by 1.5-fold (0.70 g/L) post optimization, in comparison with unoptimized conventional extraction step. Finally, the biopolymer was validated through characterization by nuclear magnetic resonance (NMR) which showed characteristic curdlan spectra in the13C and1H NMR studies. To the best of our knowledge, this study represents the first documented report on curdlan extraction using this novel method of ultrasonication.
Project description:The growth of material science and technology places high importance on creating better processes for synthesizing copper nanoparticles. Thus, an easy, ecological, and benign process for producing copper nanoparticles (CuNPs) has been developed using Priestia sp. bacteria utilizing a variety of low-cost agro-industrial wastes and byproducts. The biosynthesis of CuNPs was conducted using glucose medium and copper ions salt solution, then it was replaced by utilizing low-cost agro-industrial wastes. UV-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), High-resolution transmission electron microscope (HR-TEM), Attenuated Total Reflectance and Fourier transform infrared (ATR-FTIR), and zeta potential were used to characterize the biosynthesized CuNPs. The cytotoxicity of CuNPs using Vero -CCL-81 cell lines, and antibacterial and antitumor properties using human colon epithelial colorectal adenocarcinoma Caco-2-HTB-37 cell lines were assessed. The UV-visible and DLS studies revealed CuNPs formation, with a maximum concentration of 6.19 ppm after 48 h, as indicated by a 0.58 Surface plasmon resonance (SPR) within 450 nm and 57.73 nm particle size. The 16S rRNA gene analysis revealed that Priestia sp. isolate is closely related to Priestia megaterium and has been deposited in the NCBI GenBank with accession number AMD 2024. The biosynthesis with various agro-industrial wastes indicated blackstrap sugar cane molasses being the most effective for reducing CuNPs size to 3.12 nm owing to various reducing and stabilizing active compounds. The CuNPs were free of contaminants, with a sphere-shaped structure and a cytotoxicity assessment with an IC50 of 367.27 μg/mL. The antibacterial activity exhibited by the most susceptible bacteria were Bacillus cereus ATCC 11788 and Staphylococcus aureus ATCC 6538 with inhibition zones of 26.0 mm and 28.0 mm, respectively. The antitumor effect showed an IC50 dose of 175.36 μg/mL. Based on the findings, the current work sought to lower product costs and provide a practical solution to the environmental contamination issues brought on by the buildup of agricultural wastes. In addition, the obtained CuNPs could be applied in many fields such as pharmaceuticals, water purification, and agricultural applications as future aspects.
Project description:Here, we report the high-quality complete genome sequences and plasmid arrays of Priestia megaterium ATCC 14581T and of two clinical strains (2008724129 and 2008724142) isolated from human samples in the United States.