Project description:The human oral cavity harbors a diverse microbial community, with oral streptococci, particularly the Streptococcus mitis group, playing a pivotal role in biofilm formation and oral health. Among these, Streptococcus oralis is a key early colonizer that stabilizes oral biofilms. Here, we identify two mucin-degrading proteases, MdpS and MdpS2, that enable S. oralis to degrade MUC5B, the sole gel-forming mucin in saliva. Despite low sequence similarity, these enzymes share a high degree of tertiary structural resemblance and exhibits complementary biological functions. Their activity leads to extensive MUC5B degradation influencing biofilm dynamics by promoting biofilm dispersal and altering MUC5B and/or MUC5AC BCi mucus gels properties, with MdpS2 displaying specificity for MUC5B gels. Our findings reveal a specialized role in biofilm structural remodeling, offering potential avenues for clinical applications in biofilm modulation and mucus degradation.
2025-11-10 | PXD062603 | Pride
Project description:In vitro biofilm growth of human oral biofilm
| PRJNA1021815 | ENA
Project description:Enzymatic treatment of human oral biofilm
| PRJNA1207898 | ENA
Project description:human oral biofilm grown in vitro
| PRJNA1004439 | ENA
Project description:In vitro human oral biofilm sequencing
Project description:To combat dental implant-associated infections, there is a need for novel materials which effectively inhibit bacterial biofilm formation. In the present study, a titanium surface functionalization based on the “slippery liquid-infused porous surfaces” (SLIPS) principle was analyzed in an oral flow chamber system. The immobilized liquid layer was stable over 13 days of continuous flow. With increasing flow rates, the surface exhibited a significant reduction in attached biofilm of both the oral initial colonizer Streptococcus oralis and an oral multi-species biofilm composed of S. oralis, Actinomyces naeslundii, Veillonella dispar and Porphyromonas gingivalis. Using single cell force spectroscopy, reduced bacterial adhesion forces on the lubricant layer could be measured. Gene expression patterns in biofilms on SLIPS, on control surfaces and planktonic cultures were also compared. For this purpose, the genome of S. oralis strain ATCC® 9811TM was sequenced using PacBio Sequel technology. Even though biofilm cells showed clear changes in gene expression compared to planktonic cells, no differences could be detected between bacteria on SLIPS and on control surfaces. Therefore, it can be concluded that the ability of liquid-infused titanium to repel biofilms is solely due to weakened bacterial adhesion to the underlying liquid interface.