Project description:Epigenetic code modifications by histone deacetylase inhibitors (HDACi) have recently been proposed as potential new therapies for hematological malignancies. Chronic Lymphocytic Leukemia (CLL) remains incurable despite the introduction of new treatments. CLL cells are characterized by an apoptosis defect rather than excessive proliferation, but proliferation centers have been found in organs such as bone marrow and lymph nodes. Here, we investigated gene expression modifications in CLL cells following treatment with valproic acid (VPA), a well-tolerated anti-epileptic drug with HDAC inhibitory activity.
Project description:Epigenetic code modifications by histone deacetylase inhibitors (HDACi) have recently been proposed as potential new therapies for hematological malignancies. Chronic Lymphocytic Leukemia (CLL) remains incurable despite the introduction of new treatments. CLL cells are characterized by an apoptosis defect rather than excessive proliferation, but proliferation centers have been found in organs such as bone marrow and lymph nodes. Here, we investigated gene expression modifications in CLL cells following treatment with valproic acid (VPA), a well-tolerated anti-epileptic drug with HDAC inhibitory activity. Experiment Overall Design: CLL cells obtained from 14 patients were treated in vitro with a concentration of 1mM VPA for 4 hours. VPA effects on gene expression were thereafter studied using Affymetrix technology
Project description:Analysis of the effects of valproic acid (VPA) on chronic myelogenous leukemia K562 cells. This study attempts to elucidate the effects of VPA on cell homeostasis and hematopoietic differentiation pathways in this cell line.
Project description:Analysis of the effects of valproic acid (VPA) on chronic myelogenous leukemia K562 cells. This study attempts to elucidate the effects of VPA on cell homeostasis and hematopoietic differentiation pathways in this cell line. We used ten experimental conditions comparing valproic acid-treated and untreated cells at time points 2, 6, 10, 48 and 72 hrs respectively. Experiments were performed in three biological replicates including a dye swap (represented by replicate 3, for each timepoint).
Project description:THis is a simple ordinary differential equation model describing chemoimmunotherapy of chronic lymphocytic leukemia, including descriptions of the combinatorial effects of chemotherapy and adoptive cellular immunotherapy.
Project description:B cell chronic lymphocytic leukemia - A model with immune response
Seema Nanda 1, , Lisette dePillis 2, and Ami Radunskaya 3,
1.
Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore 560065, India
2.
Department of Mathematics, Harvey Mudd College, Claremont, CA 91711
3.
Department of Mathematics, Pomona College, Claremont, CA, 91711, United States
Abstract
B cell chronic lymphocytic leukemia (B-CLL) is known to have substantial clinical heterogeneity. There is no cure, but treatments allow for disease management. However, the wide range of clinical courses experienced by B-CLL patients makes prognosis and hence treatment a significant challenge. In an attempt to study disease progression across different patients via a unified yet flexible approach, we present a mathematical model of B-CLL with immune response, that can capture both rapid and slow disease progression. This model includes four different cell populations in the peripheral blood of humans: B-CLL cells, NK cells, cytotoxic T cells and helper T cells. We analyze existing data in the medical literature, determine ranges of values for parameters of the model, and compare our model outcomes to clinical patient data. The goal of this work is to provide a tool that may shed light on factors affecting the course of disease progression in patients. This modeling tool can serve as a foundation upon which future treatments can be based.
Keywords: NK cell, chronic lymphocytic leukemia, mathematical model, T cell., B-CLL.