Project description:Immune system cells and cells of the endometrium have long been proposed to interact in both physiological and pathological processes. The current study was undertaken to examine communication between cultured monocytes and endometrial stromal cells and also to assess responses of endometrial stromal cells to treatment with estradiol (E) in the absence and presence of medroxyprogesterone acetate (P). A telomerase-immortalized human endometrial stromal cell line (T-HESC) and the U-937 monocyte cell line were used. T-HESC were treated with E ± P ± monocyte conditioned medium; U-937 were treated ± T-HESC conditioned medium. Gene expression in response to treatment was examined by DNA microarray. Bi-directional communication, as demonstrated by changes in gene expression, clearly occurred between U-937 monocytes and T-HESC endometrial stromal cells.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:Endometriosis is an inflammatory disease and bone marrow-derived cells are abundant in endometriotic lesions and in the peritoneal fluid of women with the disease. This study tested the hypothesis that reciprocal communication occurs between macrophages and cultured human endometrial stromal cells and that this communication contributes to the pathology of endometriosis. Changes in gene expression elicited by exposure to factors secreted by the opposing cell type were measured by DNA microarray to test this hypothesis. 716 named genes were differentially expressed in cultured endometrial stromal cells in response to factors secreted by macrophages. Genes that were up-regulated included IL8/CXCL8, MMP3, phospholamban, CYR61/CCN1, CTGF/CCN2, tenascin C, and NNMT, whereas integrin alpha 6 was down-regulated. In contrast, 15 named genes were differentially expressed in macrophages in response to factors secreted by cultured endometrial stromal cells. The data document reciprocal communication between macrophages and endometrial stromal cells and suggest that interaction with macrophages stimulates the expression of genes in endometrial stromal cells that contribute to migration, adhesion, invasion, neovascularization and mitosis of endometrial cells that may support the establishment of endometriosis.