Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Escherichia coli is an important opportunistic pathogen associated with multidrug-resistant infections in humans and animals. In this study, we performed a global proteomic analysis of the isolateEC15 to characterize its whole-cell protein expression profile. Bacterial cells were cultured under standard laboratory conditions, and total proteins were extracted, digested with trypsin, and analyzed by high-resolution LC–MS/MS. The resulting dataset provides a comprehensive catalog of proteins expressed by Escherichia coli EC15 and a resource for further studies on antimicrobial resistance and virulence mechanisms in this strain.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:The antibiotic fosfomycin is widely recognized for treatment of lower urinary tract infections caused by Escherichia coli and lately gained importance as a therapeutic option to combat multidrug resistant bacteria. Still, resistance to fosfomycin frequently develops through mutations reducing its uptake. Whereas the inner membrane transport of fosfomycin has been extensively studied in E. coli, its outer membrane (OM) transport remains insufficiently understood. While evaluating minimal inhibitory concentrations in OM porin-deficient mutants, we observed that the E. coli ΔompCΔompF strain is five times more resistant to fosfomycin than the wild type and the respective single mutants. Continuous monitoring of cell lysis of porin-deficient strains in response to fosfomycin additionally indicated the relevance of LamB. Furthermore, the physiological relevance of OmpF, OmpC and LamB for fosfomycin uptake was confirmed by electrophysiological and transcriptional analysis. This study expands the knowledge of how fosfomycin crosses the OM of E. coli.
Project description:Gene expression profiles of Escherichia coli, grown anaerobically, with or without Acacia mearnsii (Black wattle) extract were compared to identify tannin-resistance strategies. The cell envelope stress protein, spy, and the multidrug transporter-encoding mdtABCD, both under the control of the BaeSR two-component regulatory system, were significantly up-regulated in the presence of tannins. BaeSR mutants were more tannin-sensitive than their wild-type counterparts. Keywords: tannin resistance
Project description:Background: This study aimed to explore potential tobramycin-resistant mutagenesis of Escherichia coli (E. coli) strains after spaceflight. Methods: A spaceflight-induced mutagenesis of multi-drug resistant E.coli strain (T1_13) on the outer space for 64 days (ST5), and a ground laboratory with the same conditions (GT5) were conducted. Both whole-genome sequencing and RNA-sequencing were performed. Results: A total of 75 SNPs and 20 InDels were found to be associated with the resistance mechanism. Compared to T1_13, 1242 genes were differentially expressed in more than 20 of 38 tobramycin-resistant E. coli isolates while not in GT5. Function annotation of these SNPs/InDels related genes and differentially expressed genes was performed. Conclusion: This study provided clues for potential tobramycin-resistant spaceflight-induced mutagenesis of E. coli.