Project description:RNA-Seq to discover circular RNA expression in Dictyostelium discoidieum with a shallow RNaseR treated RNA-Seq library; our goal was simply to prove existence of these molecules and hence samples were multiplexed with Neurospora Crassa using the same barcode.
Project description:Root and leave samples of 4 different apple genotypes were investigated in order to analyse the gene expression after infection with Apple Replant Disease (ARD). All genotypes were cultivated in ARD-infected soil and gamma-irradiated (disinfected) soil in the greenhouse for 7 days. The ARD soil originated from two different orchards representing two different soil compositions. After 7 days root tissue was collected from each plant and used for the subsequent gene expression analysis. This work was part of the project BonaRes-ORDIAmur funded by the German Federal Ministry of Research and Education within the frame of the program BonaRes (grant no. 031B0025B). It was also funded by the German Research Foundation (DFG) via the research training group GRK1798 "Signaling at the Plant-Soil Interface" and a grant to BL and LB (BE 1174/19-1).
Project description:Permafrost soil in high latitude tundra is one of the largest terrestrial carbon (C) stocks and is highly sensitive to climate warming. Understanding microbial responses to warming induced environmental changes is critical to evaluating their influence on soil biogeochemical cycles. In this study, a functional gene array (i.e. GeoChip 4.2) was used to analyze the functional capacities of soil microbial communities collected from a naturally degrading permafrost region in Central Alaska. Varied thaw history was reported to be the main driver of soil and plant differences across a gradient of minimally, moderately and extensively thawed sites. Compared with the minimally thawed site, the number of detected functional gene probes across the 15-65 cm depth profile at the moderately and extensively thawed sites decreased by 25 % and 5 %, while the community functional gene beta-diversity increased by 34% and 45%, respectively, revealing decreased functional gene richness but increased community heterogeneity along the thaw progression. Particularly, the moderately thawed site contained microbial communities with the highest abundances of many genes involved in prokaryotic C degradation, ammonification, and nitrification processes, but lower abundances of fungal C decomposition and anaerobic-related genes. Significant correlations were observed between functional gene abundance and vascular plant primary productivity, suggesting that plant growth and species composition could be co-evolving traits together with microbial community composition. Altogether, this study reveals the complex responses of microbial functional potentials to thaw related soil and plant changes, and provides information on potential microbially mediated biogeochemical cycles in tundra ecosystems.
Project description:Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties, plant and microbial communities, in particular microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38-137% in response to either clipping or the combined treatment, which could weaken the long-term soil carbon stability and trigger a positive feedback to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization and denitrification by 32-39%. The potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium caused by clipping alone, and contribute to unchanged plant biomass. Moreover, clipping tended to interact antagonistically with warming, especially on nitrogen cycling genes, demonstrating that single factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties, as well as the abundance and structure of soil microbial functional genes. The aboveground biomass removal for biofuel production needs to be re-considered as the long-term soil carbon stability may be weakened.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Understanding the mechanisms underlying the establishment of invasive plants is critical in community ecology. According to a widely accepted theory, plant-soil-microbe interactions mediate the effects of invasive plants on native species, thereby affecting invasion success. However, the roles and molecular mechanisms associated with such microbes remain elusive. Using high throughput sequencing and a functional gene microarray, we found that soil taxonomic and functional microbial communities in plots dominated by Ageratina adenophora developed to benefit the invasive plant. There were increases in nitrogen-fixing bacteria and labile carbon degraders, as well as soil-borne pathogens in bulk soil, which potentially suppressed native plant growth. Meanwhile, there was an increase of microbial antagonism in the A. adenophora rhizosphere, which could inhibit pathogenicity against plant invader. These results suggest that the invasive plant A. adenophora establishes a self-reinforcing soil environment by changing the soil microbial community. It could be defined as a ‘bodyguard/mercenary army’ strategy for invasive plants, which has important insights for the mitigation of plant invasion.
Project description:Verticillium dahliae is a soil-borne fungus with a broad host range, including the model plants Nicotiana benthamiana and Arabidopsis thaliana. The plant immunity can be activated by Vd-derived patterns while V. dahliae secreted effectors. We report here the RNAseq analyses of samples from N. benthamiana infected by V. dahliae strains 592 and 171 at different time points. The data showed dynamic expression patterns of genes not only from plant defense signaling but also plant developmental signaling.
Project description:Barcode-based multiplexing methods can be used to increase throughput and reduce batch effects in large single-cell genomics studies. To evaluate methods for demultiplexing barcode-multiplexed data, we generated a dataset by labeling samples separately with barcode-tagged antibodies, mixing those samples, and progressively overloading a droplet-based scRNA-seq system.
Project description:The Arabidopsis genome encodes 3 PAT mRNA decapping factors: PAT1(AT1g79090), PATH1 (AT3g22270) and PATH2 (AT4g14990). We generated single, double and triple knockouts (KOs) of the three PATs by CRISPR/CAS9-mediated genome editing in the summ2-8 background to avoid immune activation. The 6 weeks-old soil-grown pat triple mutants exhibited markedly stunted growth compared to the other pat single or double mutants indicating functional redundancy of PATs in regulating plant development. To identify genes which affect different developmental programs regulated by PATs, we performed RNA-seq from plants of pat1-1path1-4path2-1summ2-8 and all single and double mutant combinations.