Project description:World aquaculture production of the Pacific white shrimp (Litopenaeus vannamei) is estimated to account for 80% of the total shrimp produce worldwide. The global demand for shrimp has driven the industry to utilize and rely on semi-intensive and intensive shrimp systems. In the United States, Pacific white shrimp production can take place in semi-intensive earthen ponds, recirculating aquaculture systems (RAS), biofloc technology and green water. In this study, the effects of lowering dissolved oxygen conditions in outdoor green water tanks on global gene expression is examined. Tissue samples from the gill and intestine were collected for gene expression analysis via RNA sequencing. Among all comparisons, RNA sequencing revealed the up-regulation of a single gene: hydroxyacid oxidase 1 gene. The HOA1 gene was found to be 7-fold higher in the intestine sample at the medium aeration level compare to that of the high (control) level. The HAO1 gene, also known as glycolate oxidase 1 (GOX1) is a gene related to the 2-hydroxyacid oxidase enzyme that is part of the oxidoreductase family and plays a role in glyoxylate and dicarboxylate metabolism. The identification of a single differentially expressed gene across all analyzed samples suggests that Pacific white shrimp exposed to lowering dissolved oxygen set points does not induce global changes in gene expression at these levels.
2025-07-17 | GSE281217 | GEO
Project description:Sequencing of sediment samples from aquaculture ponds
Project description:Consumer-resource interactions are a central issue in evolutionary and community ecology because they play important roles in selection and population regulation. Most consumers encounter resource variation at multiple scales, and respond through phenotypic plasticity in the short term or evolutionary divergence in the long term. The key traits for these responses may influence resource acquisition, assimilation and/or allocation. To identify candidate genes, we experimentally assayed genome-wide gene expression in pond and lake Daphnia ecotypes exposed to alternate resource environments. One was a simple, high-quality laboratory diet, Ankistrodesmus falcatus. The other was the complex natural seston from a large lake. In temporary ponds, Daphnia generally experience high-quality, abundant resources, whereas lakes provide low-quality, seasonally shifting resources that are chronically limiting. For both ecotypes, we used replicate clones drawn from a number of separate populations. We compared gene expression in whole Daphnia pulex that had been raised in the lab for 10 days, and then exposed to alternate resource environments for 24 hours. One resource environment was a 24 hour continuation of the lab resource, a satiating level of Ankistrodesmus falcatus. The alternate environment was the natural seston present in the epilimnion of Lake Murray, South Carolina. Two ecotypes were analyzed, one adapted to large lakes, and one adapted to temporary ponds. For each ecotype, eight replicate clones were used. Clones of the lake ecotype were isolated from eight independent lakes, clones of the pond ecotype were isolated from six different ponds. The total number of arrays is 16 (8 replicate clones x 2 ecotypes) x 2 resource environments). Total RNA was extracted from eight whole organisms pooled together. Pools were then converted to cDNA and labelled with a single round of amplification. For array hybridizations, samples from the two resource environments were paired for each clone, and dyes were swapped across clones.