Project description:HAMLET triggers a p38- and ER stress-dependent death response in carcinoma cells. Transcriptome and proteome analysis detected an increase in p38 expression and phosphorylation exclusively in carcinoma cells and p38 inhibitors delayed the death response to HAMLET in carcinoma and lymphoma cells. ER stress gene expression was also increased in tumor cells and HAMLET triggered rapid XBP1 mRNA splicing, eIF2a phosphorylation, and ATF6 cleavage as well as Hsc70 and CHOP activation, suggesting that ER stress caused by HAMLET may trigger p38 phosphorylation and death. The p38 inhibitor reduced the transcription of both p38 and ER stress gene transcription. Healthy differentiated cells, in contrast, showed no alteration in p38 signaling but a rapid innate immune response was detected and the cells survived HAMLET challenge. 2 cell lines, time course, HAMLET treatment
Project description:HAMLET triggers a p38- and ER stress-dependent death response in carcinoma cells. Transcriptome and proteome analysis detected an increase in p38 expression and phosphorylation exclusively in carcinoma cells and p38 inhibitors delayed the death response to HAMLET in carcinoma and lymphoma cells. ER stress gene expression was also increased in tumor cells and HAMLET triggered rapid XBP1 mRNA splicing, eIF2a phosphorylation, and ATF6 cleavage as well as Hsc70 and CHOP activation, suggesting that ER stress caused by HAMLET may trigger p38 phosphorylation and death. The p38 inhibitor reduced the transcription of both p38 and ER stress gene transcription. Healthy differentiated cells, in contrast, showed no alteration in p38 signaling but a rapid innate immune response was detected and the cells survived HAMLET challenge.
Project description:Hepatocellular carcinoma (HCC) is the fastest growing cause of cancer-related mortality with limited therapies. While endoplasmic reticulum (ER)-stress and the unfolded protein response (UPR) are implicated in HCC, the involvement of the UPR-transducer activating transcription factor 6 alpha (ATF6α) remains unclear. We generated hepatocyte specific n-ATF6 overexpression transgenic mice via Cre-mediated recombination.