Project description:Bifidobacteria are among the earliest colonizers of the human gut and are widely used as probiotics for their health-promoting properties. However, individual responses to probiotic supplementation may vary with strain type(s), microbiota composition, diet, or lifestyle conditions, highlighting the need for strain-level insight into bifidobacterial carbohydrate metabolism. Here, we systematically reconstructed 68 pathways involved in the utilization of mono-, di-, oligo-, and polysaccharides by analyzing the distribution of 589 curated metabolic functional roles (catabolic enzymes, transporters, transcriptional regulators) in 3083 non-redundant cultured Bifidobacterium isolates and metagenome-assembled genomes (MAGs) of human origin. Our analysis uncovered extensive inter- and intraspecies heterogeneity, including a distinct clade within the Bifidobacterium longum species capable of metabolizing starch. We also identified isolates of Bangladeshi origin that harbor unique gene clusters implicated in the breakdown of xyloglucan and human milk oligosaccharides. Thirty-eight predicted carbohydrate utilization phenotypes were experimentally validated in 30 geographically diverse Bifidobacterium isolates in vitro. Our large-scale genomic compendium expands the knowledge of bifidobacterial carbohydrate metabolism and can inform the rational design of probiotic and synbiotic formulations tailored to strain-specific nutrient preferences.
Project description:Bifidobacterium longum subsp. infantis (B. infantis) is a prevalent beneficial bacterium that colonizes the human neonatal gut and is uniquely adapted to efficiently use human milk oligosaccharides (HMOs) as a carbon and energy source. Multiple studies have focused on characterizing the elements of HMO utilization machinery in B. infantis; however, the regulatory mechanisms governing the expression of these catabolic pathways remain poorly understood. A bioinformatic regulon reconstruction approach used in this study implicated NagR, a transcription factor from the ROK family, as a negative global regulator of genomic loci encoding lacto-N-biose/galacto-N-biose (LNB/GNB), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT) utilization pathways in B. infantis. This conjecture was corroborated by transcriptome profiling upon nagR genetic inactivation and experimental assessment of binding of recombinant NagR to predicted DNA operators. The latter approach also implicated N-acetylglucosamine (GlcNAc), a universal intermediate of LNT and LNnT catabolism, and its phosphorylated derivatives as plausible NagR effectors. Reconstruction of NagR regulons in various Bifidobacterium lineages revealed multiple regulon expansion events, suggesting evolution from a local regulator of GlcNAc catabolism in ancestral bifidobacteria to a global regulator controlling foraging of mixtures of GlcNAc-containing host-derived glycans in mammalian gut-colonizing B. infantis and Bifidobacterium bifidum.
Project description:Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade various polysaccharide components of plant cell walls. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species C. saccharolyticus and C.bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to fourteen Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose.
Project description:Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade various polysaccharide components of plant cell walls. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species C. saccharolyticus and C.bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to fourteen Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose.
Project description:Members of the genus Bifidobacterium are Gram-positive bacteria which are commonly found in the gastrointestinal tract (GIT) of mammals, including humans. Growth of bifidobacteria has been shown to be selectively stimulated by various carbohydrates found in the human diet. To extend our understanding of the regulation of bifidobacterial carbohydrate utilization systems, we investigated the regulation of two carbohydrate utilisation clusters dedicated to the metabolism of raffinose type sugars and melezitose. Transcriptomic and functional genomic approaches clearly identified that the raffinose utilisation system is positively regulated by the activator RafR, while the melezitose utilisation system is negatively regulated by lacI type transcriptional regulators. A B. breve UCC2003-rafR insertion mutant was incapable of utilising raffinose containing sugars or melibiose as a sole carbohydrate source, while the UCC2003-lacI1 and UCC2003-lacI2 insertion mutants retained their ability to utilise melezitose as a sole carbohydrate source. In silico analysis and DNA/protein interaction studies revealed a novel conserved 22 bp palindromic sequence as the RafR binding operator sequence in the rafB promoter region. Within the melezitose utilisation cluster a 20bp palindromic sequence for the melA promoter region and a 24bp palindromic sequence for the Bbr_1863 promoter region
Project description:The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs) in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism’s 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These results offer insight into how gut microbes adapt to dietary perturbations at both a community level and from the perspective of a well-adapted symbiont with exceptional saccharolytic capabilities, and illustrate the value of artificial communities. 611 samples total (221 from experiment 1, 390 from experiment 2). Evaluation of changes in an artificial gut community's structure over time as a result of dietary oscillation.
Project description:Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses.
Project description:Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses.
Project description:The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs) in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism’s 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These results offer insight into how gut microbes adapt to dietary perturbations at both a community level and from the perspective of a well-adapted symbiont with exceptional saccharolytic capabilities, and illustrate the value of artificial communities. 116 samples total. In 26 of these samples, we evaluated community-wide gene expression using RNA isolated from the feces of a gnotobiotic mouse harboring an artificial community comprised of 12 human gut microbes. For these samples, we sought to determine the extent to which community gene expression is altered as a result of dietary oscillation. In the other 90 samples, we evaluated gene expression in a single species (B. cellulosilyticus WH2) grown in a defined medium supplemented with a single mono-, oligo-, or polysaccharide. For these samples, we sought to identify genes (particularly polysaccharide utilization loci) whose expression was significantly increased as a result of exposure to particular carbohydrates.