Project description:Nitrate-reducing iron(II)-oxidizing bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture KS. Raw sequencing data of 16S rRNA amplicon sequencing, shotgun metagenomics (short reads: Illumina; long reads: Oxford Nanopore Technologies), metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682552. This dataset contains proteomics data for 2 conditions (heterotrophic and autotrophic growth conditions) in triplicates.
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:Purpose: This study aims to compare and analyze the differences in bacterial community composition in fecal samples from mice treated with Control(DW), Vancomycin (VAN), Ampicillin (AMP), Neomycin (NEO), Metronidazole (MET), and a combination of all antibiotics (ALL, VANM) using 16S rRNA sequencing. Methods: Each antibiotics treated mice's fecal samples were collected and stored -80'c until analyzation. DNA was extracted using the NucleoSpin DNA Stool Kit (MACHEREY-NAGEL) following the manufacturer’s protocol. Metagenomic sequencing was performed on an Illumina MiSeq platform (Illumina), targeting the V3 and V4 regions of the 16S rRNA gene according to the manufacturer's instructions. PCR products were purified using AMPure XP beads, and sequencing adapters were added using the Nextera XT Index Kit (Illumina). The library was further purified with AMPure XP beads and quantified using automated electrophoresis with the TapeStation System (Agilent). Sequencing was performed using the MiSeq v3 reagent kit (Illumina), following the manufacturer’s protocol. Results: QIIME2 (v2023.02) was used to process and analyze 16S rRNA gene amplicon sequencing data, from sequence preprocessing to taxonomic classification. Paired-end sequences were merged and quality-filtered using Deblur. The resulting amplicon sequence variants (ASVs) were used for downstream analyses. Conclusions: Our study presents a comparative analysis of bacterial community composition in fecal samples from antibiotic-treated mice. We observed that microbiota composition varied distinctly depending on the type of antibiotic administered.