Project description:Exosomes were isolated from plasma of healthy donors (HD) and patients with hereditary angioedema (HAE). miRNA profiling of plasma-derived exosomes was performed using nCounter SPRINT system. miRNA levels were compared between HD and HAE patients.
Project description:Exosomes were isolated from plasma and saliva of healthy individuals and head and neck cancer (HNSCC) patients. miRNA profiling of plasma- and saliva-derived exosomes was performed using nCounter SPRINT system. Diagnostic panels were selected from the exosomal miRNA profile.
Project description:Cardiac myxoma (CM) is an important aetiology of stroke in young adults, and its diagnosis is difficult in patients having stroke because of the lack of diagnostic biomarkers. Tumour-derived exosomes play a crucial role in tumour growth, metastasis, and immune regulation, and monitor disease development. We established an RNA-sequencing dataset for long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) in the plasma and tumour-derived exosomes from four patients with cardiac myxoma-related ischaemic stroke (CM-IS) and six patients with cardiac myxoma without ischaemic stroke (non-IS CM). Clean data (15.48 Gb) were obtained for lncRNAs and mRNAs. Moreover, 5,533 lncRNAs, 1,331 known miRNAs, and 412 new miRNAs were identified. Finally, gene expression profiles and differentially expressed genes were analysed in 20 samples. In the plasma samples, 74 miRNAs, 12 lncRNAs, and 693 mRNAs were identified. Tumour-derived tissue samples contained 61 miRNAs, 67 lncRNAs, and 433 mRNAs. This dataset provides a significant resource for relevant researchers to explore the potential dysregulated lncRNAs, miRNAs, and mRNAs of plasma and tumour-derived exosomes in CM-IS versus CM without stroke.
Project description:Despite a significant progress in the treatment of Acute Respiratory Distress Syndrome (ARDS), our ability to identify early patients and predict outcome remains limited. In this study, we aimed to characterize small RNA content of plasma exosomes from ARDS patients in order to identify potential diagnostic biomarkers of the disease. For the first time, we profiled miRNA expression levels in plasma-derived exosomes from ARDS patients (n=8) compared to healthy subjects (n=10) by small RNA-seq. It allowed us to identify 12 exosomal miRNAs differentially expressed in ARDS context (padj<0.05).
Project description:More and more studies have showed that plasma exosomal miRNAs are biomarkers for disease. The aim of the study were to investigate the miRNA profiling in plasma exosomes of patients with segmental vitiligo (SV) and to find biomarkers in plasma exosomes for patients with SV. Plasma exosomes and exosomal RNA of 7 SV patients and 8 health persons were purified by exoRNeasy Serum/Plasma Maxi Kit. The miRNA profiles of the 15 samples were sequenced using HiSeq 2500 (Illumina) and analyzed by Reads Per Million (RPM) values and edgeR algorithm. Some differently expressed miRNAs in plasma exosomes and skin tissues of the two sets were validated by qRT–PCR.A total of 85 miRNAs in plasma exosomes showed differential expression between SV patients and health persons, with a |log2(Fold Change)|≥1 and P-value < 0.05. Several miRNAs were confirmed by qRT–PCR and showed similar expression patterns between plasma exosomes and skin tissues. Our study depict the miRNAs expression profiles in plasma exosomes of SV patients and suggest that several miRNAs in plasma exosomes may serve as biomarkers for SV.
Project description:More and more studies have showed that plasma exosomal miRNAs are biomarkers for disease. The aim of the study were to investigate the miRNA profiling in plasma exosomes of patients with non-segmental vitiligo (NSV) and to find biomarkers in plasma exosomes for patients with NSV. Plasma exosomes and exosomal RNA of 10 NSV patients and 10 health persons were purified by exoRNeasy Serum/Plasma Maxi Kit. The miRNA profiles of the 20 samples were sequenced using HiSeq 2500 (Illumina) and analyzed by Reads Per Million (RPM) values and edgeR algorithm. Some differently expressed miRNAs in plasma exosomes and skin tissues of the two sets were validated by qRT–PCR.Several miRNAs were confirmed by qRT–PCR and showed similar expression patterns between plasma exosomes and skin tissues. Our study depict the miRNAs expression profiles in plasma exosomes of NSV patients and suggest that several miRNAs in plasma exosomes may serve as biomarkers for NSV.
Project description:This study examined the miRNA expression level in exosomal derived from the plasma of first episode schizophrenia (FOS) patients and Healthy controls (HC), and explored the the potential of exosomes as biomarkers for schizophrenia. This study examined the lncRNA expression level in exosomal derived from the plasma of first episode schizophrenia (FOS) patients and Healthy controls (HC), and explored the the potential of exosomes as biomarkers for schizophrenia. This study examined the mRNA expression level in exosomal derived from the plasma of first episode schizophrenia (FOS) patients and Healthy controls (HC), and explored the the potential of exosomes as biomarkers for schizophrenia.
Project description:Stroke places a huge burden on society today, and great of studies were devoted for seeking safe and effective therapeutic strategy to improve the prognosis of stroke. Plasma exosome has exhibited its therapeutic potential against ischemia and reperfusion injury via ameliorating inflammation. To enhance therapeutic potential in patients with ischemic injury, we isolated exosomes from melatonin pretreated rat plasma and assessed the neurological protective effect in a rat model of focal cerebral ischemia. Treatment with melatonin enhanced plasma exosome therapeutic effect against ischemia induced inflammatory response and inflammasome mediated pyroptosis. In addition, we confirmed ischemic stroke induced pyroptotic cell death mainly occurred in microglia, while administration of melatonin treated exosome further effectively decreased infract volume and improved function recovery via regulation of TLR-4/NF-κB signaling pathway. Finally, the altered miRNAs profile in melatonin treated plasma exosomes demonstrated the regulatory mechanisms. This study suggests plasma exosome with melatonin pretreatment might be a more effective strategy for patients with ischemic brain injury. Further exploration of key molecules in plasma exosome may devote more therapeutic value for cerebral ischemic injury.