ABSTRACT: Strawberry Domestication Targeted a Loss-of-Function Mutation in a Polygalacturonase Gene That Doubles Fruit Firmness and Increases Shelf Life
Project description:Strawberry Domestication Targeted a Loss-of-Function Mutation in a Polygalacturonase Gene That Doubles Fruit Firmness and Increases Shelf Life
Project description:To identify miRNAs involved in senescence of strawberry fruit, two independent small RNA libraries and one degradome library from strawberry fruits stored at 20 M-BM-0C for 0 and 24 h were constructed. A total of 18,759,735 and 20,293,492 mappable small RNA sequences were generated in the two small RNA libraries, respectively, and 88 known and 1224 new candidate miRNAs were obtained. Among them, 94 miRNAs were up-regulated and 64 were down-regulated in the senescence of strawberry fruit. Through degradome sequencing, 103 targets cleaved by 19 known miRNAs families and 55 new candidate miRNAs were identified. 14 targets, including NAC transcription factor, Auxin response factors (ARF) and Myb transcription factors, cleaved by 6 known miRNA families and 6 predicted candidates, were found to be involved in regulating fruit senescence. sample 1: Examination of small RNA in strawberry fruits stored at 20 M-BM-0C for 0; sample 2: Examination of small RNA in strawberry fruits stored at 20 M-BM-0C for 24 h
Project description:To identify miRNAs involved in senescence of strawberry fruit, two independent small RNA libraries and one degradome library from strawberry fruits stored at 20 °C for 0 and 24 h were constructed. A total of 18,759,735 and 20,293,492 mappable small RNA sequences were generated in the two small RNA libraries, respectively, and 88 known and 1224 new candidate miRNAs were obtained. Among them, 94 miRNAs were up-regulated and 64 were down-regulated in the senescence of strawberry fruit. Through degradome sequencing, 103 targets cleaved by 19 known miRNAs families and 55 new candidate miRNAs were identified. 14 targets, including NAC transcription factor, Auxin response factors (ARF) and Myb transcription factors, cleaved by 6 known miRNA families and 6 predicted candidates, were found to be involved in regulating fruit senescence.
Project description:The role played by transcription factors in the regulation of strawberry fruit ripening process is scant. We have identified and functionally characterized FaPRE1, a non-DNA-binding bHLH transcription factor. FaPRE1 is a ripening-related transcription factor that regulates genes involved in cell architecture in strawberry fruit receptacles.
Project description:The role played by transcription factors in the regulation of strawberry fruit ripening process is scant. We have identified and functionally characterized FaDOF2, a DOF-type transcription factor. FaDOF2 is a ripening-related transcription factor that regulates key genes involved in eugenol biosynthesis in strawberry fruit receptacles.
Project description:The role played by transcription factors in the regulation of strawberry fruit ripening process is scant. We have identified and functionally characterized FaPRE1, a non-DNA-binding bHLH transcription factor. FaPRE1 is a ripening-related transcription factor that regulates genes involved in cell architecture in strawberry fruit receptacles.
Project description:Breeding day-neutral strawberry (Fragaria x ananassa Duchesne) is pivotal to extend fruit-bearing season and increase the efficiency of production. However, genetic improvement of day-neutrality by the means of molecular marker technologies remains slow due to genome complexity of octoploid strawberry. This study employs an innovative approach by integrating the Subtracted Diversity Array (SDA) technology and Bulked Segregant Analysis (BSA) to facilitate the identification of molecular markers associated with day-neutrality in octoploid strawberry. A Fragaria Discovery Panel (FDP) containing 287 features specific to strawberry genome was constructed as a platform for rapid screening of DNA polymorphism between one short day (SD) strawberry DNA bulk and three day-neutral (DN) bulks varrying in flowering strength. Differential array hybridisation patterns between the DN and SD bulks revealed a novel molecular marker, FaP2E11, closely linked to CYTOKININ OXIDASE 1 (CKX1) gene possibly involved in promoting flowering under non-inductive condition. Interestingly, a 12 bp deletion was observed within the FaP2E11 sequence cloned from SD genotypes but not DN genotypes. As cytokinin is required to induce flowering, this result indicates that full sequence of FaP2E11 and the sequence with deletion are allelic variants linked to the low enzyme activity CKX1 and the wild type alleles, respectively.
Project description:Fragaria vesca, a diploid woodland strawberry with a small and sequenced genome, is an excellent model for studying fruit development. The strawberry fruit is unique in that the edible flesh is actually enlarged receptacle tissue. The true fruit are the numerous dry achenes dotting the receptacleM-^Rs surface. Auxin produced from the achene is essential for the receptacle fruit set, a paradigm for studying crosstalk between hormone signaling and development. To investigate the molecular mechanism underlying strawberry fruit set, next-generation sequencing was employed to profile early-stage fruit development with five fruit tissue types and five developmental stages from floral anthesis to enlarged fruits. This two-dimensional data set provides a systems-level view of molecular events with precise spatial and temporal resolution.