Project description:Synthetic microbial consortia represent a new frontier for synthetic biology given that they can solve more complex problems than monocultures. However, most attempts to co-cultivate these artificial communities fail because of the ‘‘winner-takes-all’’ in nutrients competition. In soil, multiple species can coexist with a spatial organization. Inspired by nature, here we show that an engineered spatial segregation method can assemble stable consortia with both flexibility and precision. We create microbial swarmbot consortia (MSBC) by encapsulating subpopulations with polymeric microcapsules. The crosslinked structure of microcapsules fences microbes, but allows the transport of small molecules and proteins. MSBC method enables the assembly of various synthetic communities and the precise control over the subpopulations. These capabilities can readily modulate the division of labor and communication. Our work integrates the synthetic biology and material science to offer new insights into consortia assembly and server as foundation to diverse applications from biomanufacturing to engineered photosynthesis.
2022-07-04 | PXD034417 | Pride
Project description:Establishment of Mixed microbial/methanotrophic consortia
| PRJEB17609 | ENA
Project description:Enrichment of syngas-converting mixed microbial consortia
Project description:Hundreds of microbial species were found to be transcriptionally active in the human gut microbiome based on the expression profiling of ca. 680.000 microbial genes
Project description:Microbial consortia consist of a multitude of prokaryotic and eukaryotic microorganisms. Their interaction is critical for the functioning of ecosystems. Until now, there is limited knowledge about the communication signals determining the interaction between bacteria and fungi and how they influence microbial consortia. Here, we discovered that bacterial low molecular weight arginine-derived polyketides trigger the production of distinct natural products in fungi. These compounds are produced by actinomycetes found on all continents except Antarctica and are characterized by an arginine-derived positively charged group linked to a linear or cyclic polyene moiety. Producer bacteria can be readily isolated from soil as well as fungi that decode the signal and respond with the biosynthesis of natural products. Both arginine-derived polyketides and the compounds produced by fungi in response shape microbial interactions.
2023-06-16 | PXD033242 | Pride
Project description:Metagenome sequencing of mixed microbial consortia from syngas enrichment cultures
Project description:Microarrays have become established tools for describing microbial systems, however the assessment of expression profiles for environmental microbial communities still presents unique challenges. Notably, the concentration of particular transcripts are likely very dilute relative to the pool of total RNA, and PCR-based amplification strategies are vulnerable to amplification biases and the appropriate primer selection. Thus, we apply a signal amplification approach, rather than template amplification, to analyze the expression of selected lignin-degrading enzymes in soil. Controls in the form of known amplicons and cDNA from Phanerochaete chrysosporium were included and mixed with the soil cDNA both before and after the signal amplification in order to assess the dynamic range of the microarray. We demonstrate that restored prairie soil expresses a diverse range of lignin-degrading enzymes following incubation with lignin substrate, while farmed agricultural soil does not. The mixed additions of control cDNA with soil cDNA indicate that the mixed biomass in the soil does interfere with low abundance transcript changes, nevertheless our microarray approach consistently reports the most robust signals. Keywords: comparative analysis, microbial ecology, soil microbial communities