Project description:In this study, we aim to present a global transcriptome analysis of medicinal/spice plant, Crocus sativus. We generated about 206 million high-quality reads from five tissues (corm, leaf, Tepal, stamen and stigma) using Illumina platform. We performed an optimized de novo assembly of the reads and estimated transcript abundance in different tissue samples. The transcriptome dynamics was studied by differential gene expression analyses among tissue samples.
Project description:In order to investigate the physiological and biochemical characteristics and molecular mechanisms during the leaf colour change of Acer rubrum L, this study used Acer rubrum L. 'Autumn Blaze' cuttings as material and analysed the transcriptome and miRNAs of Acer rubrum L leaves under different light and temperature treatments. The transcriptome and miRNAs of Acer rubrum L leaves were analysed under different light and temperature treatments, and miRNA-mRNA association analysis was performed for the differentially expressed mRNAs and miRNAs.
2023-03-02 | GSE226127 | GEO
Project description:Transcriptome of Grifola frondosa under different light and dark treatments
| PRJNA1217839 | ENA
Project description:Transcriptome of Cylindrobasidium torrendii under different light and dark treatments
| PRJNA1188722 | ENA
Project description:Transcriptome of Cordyceps militaris under different light and dark treatments
| PRJNA1215690 | ENA
Project description:Transcriptome of Trametes versicolor under different light and dark treatments
Project description:Background: Crocus sativus L. belongs to the Iridaceae family and its dried stigma, called saffron, is one of the world’s most expensive spice. C. sativus is also a famous medicinal plant on account of producing significant pharmaceutical apocarotenoids like crocins, crocetin, picrocrocin and safranal. These metabolites have been reported to play important pharmacological efficiency towards many diseases. However, the regulatory mechanism of saffron apocarotenoids biosynthesis and stigma specific accumulation remains poorly understood. Results: In this work, we performed deep transcriptomic sequencing and dynamic metabolomic profiling of different developmental stage stigmas, and firstly integrated the dynamic changes of apocarotenoids with dynamic transcriptomic data. As a result, a co-expression network was constructed, and 41 pathway genes, 5 TF genes were identified as hub genes probably participating in apocarotenoid biosynthesis, validated by qRT-PCR. The reliability of these results was validated by previous research of several genes, which were also screened out by the co-expression network. Conclusions: This work provides novel insights into the mechanism by which the apocarotenoids is synthesized and regulated. Such gene-to-apocarotenoid landscapes associated with different developmental stigma are fundamental of deeply understanding the biosynthesis and metabolic engineering of saffron apocarotenoids in the C. sativus and other plant.