Project description:The synthetic microbial community used in this study was composed of the major functional guilds (cellulolytic fermenter, sulfate reducer, hydrogenotrophic methanogen and acetoclastic methanogen) that mediate the anaerobic conversion of cellulosic biomass to CH4 and CO2 in wetland soils. The choice of a facultative sulfate-reducing bacterium (Desulfovibrio vulgaris Hildenborough) introduced metabolic versatility and enabled investigations into the community response to sulfate intrusion. The growth status of these multi-species cultures was measured over a week by daily analysis of substrate consumption and product accumulation. The quad-cultures were analyzed with metaproteomics at the end of experiment to characterize the community structure and metabolic activities.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:Rhizoctonia solani Kühn is a soilborne basidiomycetous fungus that causes significant damage to many economically important crops. R. solani isolates are classified into 13 Anastomosis Groups (AGs) with interspecific subgroups having distinctive morphology, pathogenicity and wide host range. However, the genetic factors that drive the unique fungal pathology are still not well characterized due to the limited number of available annotated genomes. Therefore, we performed genome sequencing, assembly, annotation and functional analysis of 13 R. solani isolates covering 7 AGs and selected subgroups (AG1-IA, AG1-IB, AG1-IC, AG2-2IIIB, AG3-PT, AG3-TB, AG4-HG-I, AG5, AG6, and AG8). Here, we report a pangenome comparative analysis of 13 R. solani isolates covering important groups to elucidate unique and common attributes associated with each isolate, including molecular factors potentially involved in determining AG-specific host preference. Finally, we present the largest repertoire of annotated R. solani genomes, compiled as a comprehensive and user-friendly database, viz. RsolaniDB. Since 7 genomes are reported for the first time, the database stands as a valuable platform for formulating new hypotheses by hosting annotated genomes, with tools for functional enrichment, orthologs and sequence analysis, currently not available with other accessible state-of-the-art platforms hosting Rhizoctonia genome sequences.