Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:The gene expression of two different tumorigenic human breast epithelial cell types (HMLER and BPLER) is compared with their immortalized parental cell-of-origin (HME and BPE). Experiment Overall Design: Two different normal primary human mammary epithelial cell populations (BPECs and HMECs) were isolated based on their differing in vitro growth requirements. These cells were immortalized by hTERT giving rise to BPE and HME cells. These hTERT immortalized cells (BPE and HME) were transformed by SV40-early region (LT+st) and H-Ras giving rise to transformed tumorigenic derivatives BPLER and HMLER. Biological replicates (4 - 6 samples) for each of 4 cell types were analyzed (untransformed hTERT immortalized cell populations (BPE&HME), and transformed tumorigenic derivatives (BPLER & HMLER).
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs. Two-condition experiment, KP MSCs vs. 3A6 MSCs.
Project description:To investigate the mechanism of telomerase regulation in BCR-ABL positive cells due to its clinical value, we studied the catalytic component of telomerase, TERT. Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited hTERT at the mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells. TRAP assay also revealed that Gleevec treatment significantly reduced TA specifically in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec. Although Gleevec down-regulated hTERT mRNA level, the protein level of hTERT remained unchanged. Therefore, Gleevec-induced-TA decrease is not due to the alteration in telomerase subunits expression. It could be presumably due to posttranslational modification of hTERT, possibly through multiple signaling pathways. We have found that Gleevec reduced the tyrosine phosphorylation of hTERT by BCR-ABL, which is associated with the nucleoplasm localization of hTERT from nucleoli sequesters. These findings reveal unknown functions and regulations of telomerase by BCR-ABL.
Project description:The miRNA expression profiles in one pair of hTERT-positive gastric cancer tissue and an hTERT-negative para-cancerous tissue. The para-cancerous tissue is at least 5cm away from the cancer tisse. The expression of hTERT of identified by immunohistochemistry before RNA extraction for miRNA assay.