Project description:Topping is an important cultivating measure for flue-cured tobacco, and many genes had been found to be differentially expressed in response to topping. But it is still unclear how these genes are regulated. MiRNAs play a critical role in post-transcriptional gene regulation, so we sequenced two sRNA libraries from tobacco roots before and after topping, with a view to exploring transcriptional differences in miRNAs.Two sRNA libraries were generated from tobacco roots before and after topping. Solexa high-throughput sequencing of tobacco small RNAs revealed a total of 12,104,207 and 11,292,018 reads representing 3,633,398 and 3,084,102 distinct sequences before and after topping. The expressions of 136 conserved miRNAs (belonging to 32 families) and 126 new miRNAs (belonging to 77 families) were determined. There were three major conserved miRNAs families (nta-miR156, nta-miR172 and nta-miR171) and two major new miRNAs families (nta-miRn2 and nta-miRn26). All of these identified miRNAs can be folded into characteristic miRNA stem-loop secondary hairpin structures, and qRT-PCR was adopted to validate and measure the expression of miRNAs. Putative targets were identified for 133 out of 136 conserved miRNAs and 126 new miRNAs. Of these miRNAs whose targets had been identified, the miRNAs which change markedly (>2 folds) belong to 53 families and their targets have different biological functions including development, response to stress, response to hormone, N metabolism, C metabolism, signal transduction, nucleic acid metabolism and other metabolism. Some interesting targets for miRNAs had been determined.
Project description:Topping is an important cultivating measure for flue-cured tobacco, and many genes had been found to be differentially expressed in response to topping. But it is still unclear how these genes are regulated. MiRNAs play a critical role in post-transcriptional gene regulation, so we sequenced two sRNA libraries from tobacco roots before and after topping, with a view to exploring transcriptional differences in miRNAs.Two sRNA libraries were generated from tobacco roots before and after topping. Solexa high-throughput sequencing of tobacco small RNAs revealed a total of 12,104,207 and 11,292,018 reads representing 3,633,398 and 3,084,102 distinct sequences before and after topping. The expressions of 136 conserved miRNAs (belonging to 32 families) and 126 new miRNAs (belonging to 77 families) were determined. There were three major conserved miRNAs families (nta-miR156, nta-miR172 and nta-miR171) and two major new miRNAs families (nta-miRn2 and nta-miRn26). All of these identified miRNAs can be folded into characteristic miRNA stem-loop secondary hairpin structures, and qRT-PCR was adopted to validate and measure the expression of miRNAs. Putative targets were identified for 133 out of 136 conserved miRNAs and 126 new miRNAs. Of these miRNAs whose targets had been identified, the miRNAs which change markedly (>2 folds) belong to 53 families and their targets have different biological functions including development, response to stress, response to hormone, N metabolism, C metabolism, signal transduction, nucleic acid metabolism and other metabolism. Some interesting targets for miRNAs had been determined. 2 samples examined:roots before and after topping
Project description:Up to now, the mechanism of the effect of topping on tobacco hormone regulation is not clear, and most studies on plant hormone signal transduction pathways rely on gene or transcriptional pathways. In this study, the regulatory mechanism of hormones in roots and leaves of topped and untopped tobacco was studied at the protein level.
Project description:Background: Anatabine, although being one of four major tobacco alkaloids, is never accumulated in high quantity in any of the naturally occurring species from the Nicotiana genus. Previous studies therefore focused on transgenic approaches to synthetize anatabine, most notably by generating transgenic lines with suppressed putrescine methyltransferase (PMT) activity. This led to promising results, but the global gene expression of plants with such distinct metabolism has not been analyzed. In the current study, we describe how these plants respond to topping and the downstream effects on alkaloid biosynthesis. Results: The surge in anatabine accumulation in PMT transgenic lines after topping treatment and its effects on gene expression changes were analyzed. The results revealed increases in expression of isoflavone reductase-like (A622) and berberine bridge-like enzymes (BBLs) oxidoreductase genes, previously shown to be crucial for the final steps of nicotine biosynthesis. We also observed significantly higher methylputrescine oxidase (MPO) expression in all plants subjected to topping treatment. In order to investigate if MPO suppression would have the same effects as that of PMT, we generated transgenic plants. These plants with suppressed MPO expression showed an almost complete drop in leaf nicotine content, whereas leaf anatabine was observed to increase by a factor of ~1.6X. Conclusion: Our results are the first concrete evidence that suppression of MPO leads to decreased nicotine in favor of anatabine in tobacco roots and that this anatabine is successfully transported to tobacco leaves. Alkaloid transport in plants remains to be investigated to higher detail due to high variation of its efficiency among Nicotiana species and varieties of tobacco. Our research adds important step to better understand pyrrolidine ring biosynthesis and its effects on gene expression and subsequent accumulation of anatabine.
Project description:We used two hybrid combinations and their 4 parents as materials. One week after topping the tobacco plant, samples were taken, including three tissues: root, stalk, and leaf. The RNA of these samples was extracted, and transcriptome sequencing analysis was carried out to explore the transcriptional profile differences between hybrids and their parents, and to analyze the gene differential expression between different tissues.
Project description:Top removal is a widely utilized method in production process of tobacco, but little is known regarding the way it impacts protein and metabolic regulation. In this study, we investigated the underlying processes of alterations in cigar tobacco leaves with and without top removal, using a combined proteomic and metabolomic approach. The results revealed that: (1) Topping significantly affected superoxide anion (O2 -) levels, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content, (2) In the cigar tobacco proteome, 385 differentially expressed proteins (DEPs) were identified, with 228 proteins upregulated and 156 downregulated. Key pathways enriched included flavonoid biosynthesis, porphyrin and chlorophyll metabolism, cysteine and methionine metabolism, and amino acid biosynthesis and metabolism. A network of 161 nodes interconnected by 102 significantly altered proteins was established, (3) In the cigar tobacco metabolome, 247 significantly different metabolites (DEMs) were identified, with 120 upregulated and 128 downregulated metabolites, mainly comprising lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and derivatives, and organic heterocyclic compounds, (4) KEGG pathway enrichment revealed upregulation of proteins such as chalcone synthase (CHS), chalcone isomerase (CHI), naringenin 3-dioxygenase (F3H), and flavonoid 3'-monooxygenase (F3'H), along with metabolites like pinocembrin, kaempferol, trifolin, rutin, and quercetin, enhancing the pathways of 'flavonoid' and 'flavone and flavonol' biosynthesis. This study sheds light on the metabolic and proteomic responses of cigar tobacco after topping.
2025-02-10 | PXD060658 |
Project description:Nicotiana tabacum Chemical topping
| PRJNA655496 | ENA
Project description:Topping and grafting affect the alkaloid content and gene expression pattern on tobacco (Nicotiana tabacum L.)
| PRJNA881621 | ENA
Project description:Mapping of rice albino after transplanting
| PRJNA1274153 | ENA
Project description:Transcriptome of Yunyan 87 under different transplanting period